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Abstract: Thin-film resonant absorbers for the far-IR spectral range were 
fabricated, characterized, and modeled. The 3-μm-thick structure comprises 
a periodic surface array of metal squares, a dielectric spacer and a metallic 
ground plane. Up to 95% absorption for the fundamental band at ~53.5μm 
wavelength (5.6 THz) is achieved experimentally. Absorption bands are 
independent of the structure period and only weakly dependent on 
polarization and incident angle. The results are well explained in terms of 
standing-wave resonances within individual metal-dielectric-metal cavities. 
The structure has application as a wavelength selective coating for far-IR 
bolometers. 
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1. Introduction 

Far-infrared imaging has garnered recent interest for applications in biomedicine [1], 
environmental remote sensing [2], explosives detection [3], materials characterization [4,5], 
and astronomy [6]. Bolometric detection, in which the heat generated by far-infrared 
absorption is sensed, is usual in this wavelength range. Sensitivity depends on having efficient 
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absorbers. Confinement of the absorption to specific wavelength bands of interest improves 
signal-to-noise ratios. 

Far-infrared metamaterial absorbers (MA)have been studied as potential absorptive 
coatings for bolometers because of their high performance, thinness, and selectivity [7–17]. 
Thin Mas have been reported with polarization independent and omnidirectional absorption 
bands [7–24]. Typical Mas comprise 3 layers. Aperiodically patterned metallic top layer, 
together with a middle dielectric spacer layer and a conducting base layer, create resonances 
that achieve frequency-selective absorption. Reported patterns include split ring resonators 
(SRR) [7–16], crosses [18], squares and rectangles [19–21]. The absorption band width, 
polarization dependence, and spectral line shape depend on design. 

Explanations for the resonant absorption are varied. Some adopt a meta-materials 
approach, where permittivity and permeability describe the macroscopic electrodynamics of a 
surface that is spatially averaged over the sub-wavelength structures, and strong dispersion 
due to magnetic resonances creates a surface impedance to match that of free space [7–
16].Alternative descriptions exist, such as the interference approach [23], which assumes the 
two metal layers are linked by multiple reflections and superposition similar to Fabry-Perot 
resonances. The inspiration for the model we develop here is based on planar waveguides 
with resonant standing waves [24]. 

We present results for a far-IR absorber with a surface pattern comprising a periodic 
pattern of squares, which follows known near- [18,19], and mid-IR designs [20].There are few 
prior reports of periodic square (or rectangular patterns)designed for far-IR absorption beyond 
~10 micron wavelengths [14,21].We observe multiple absorption bands, which are attributed 
to fundamental and harmonic resonances. Up to 95% absorption was achieved in the 
fundamental band at 53.5μm wavelength. A strong harmonic band with 98% absorption 
occurs at 30 μm. The absorption bands are only weakly dependent on polarization and 
incident angle. 

To interpret the experimental far-infrared reflectivity spectra, we adapted a model 
proposed by Peng et al. [24], based on standing wave resonances in a finite metal-dielectric-
metal (MDM)waveguide. A number of modifications were implemented to improve the 
accuracy of this theory. Successes of the model include prediction of the fundamental and 
higher order resonance wavelengths, the dependence of these resonances on square size and 
dielectric thickness, the independence of the resonances on the period of the structure, and the 
insensitivity to polarization or incidence angle. Finite difference time domain (FDTD) 
simulations support the interpretation. 

2. Theory 

Figure 1 presents a schematic side view of one unit cell of the structure. For simplicity we 
consider a 2D model with translational invariance normal to the plane of the figure, so that the 
top metallization consists of metal stripes of width l separated by gaps. The stripes are 
supported by a thin dielectric layer of thickness t. Underlying the dielectric is an optically 
thick plane of metal. Success of this model requires consideration only of one unit cell, and it 
is independent of the period of the stripe array or the size of the gap between the stripes. 
Hence, Fig. 1 presents a schematic of just a single unit cell. Far-infrared radiation incident 
from above, and polarized with the electric field in the plane of the figure (transverse 
magnetic TM), drives a periodic polarization along the top surface of the metal stripe. When 
the thickness of the stripe exceeds the electromagnetic penetration depth, an opposite 
polarization appears along the bottom surface. The fields due to this polarization are strongly 
intensified at the edges and corners of the stripes, creating vertically-oriented oscillating edge 
dipoles. These polarized edges comprise line-dipole sources of radiation, as suggested by the 
sketched dipolar field lines. This interpretation of the polarization and resulting field 
distribution was informed by the electrodynamics simulations of [24], and those shown 
below. 
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Fig. 1. Schematics of one unit cell of the structure. The edges of the metal stripes are line 
sources of radiation induced by the incident wave. Standing waves are formed under the stripe 
with different odd numbers b of reflections from the metal. Shown are rays for b = 1 (a) and b 
= 3 (b). Resonances correspond to odd integer numbers of half-wavelengths along the indicated 
paths. 

That the width of the gaps between neighboring stripes is unimportant is supported by 
agreement of the theory with our reflectivity experiments on a single metal feature, where 
there are only edges while gaps are infinite [25]. In experiments reported here, the gaps are 
just a few microns wide, i.e. much smaller than the incident wavelengths. Nevertheless, the 
radiating edge dipoles assure that electromagnetic energy will appear in the dielectric layer. 
Existence proof of such an effect is the phenomenon of “extraordinary transmission” [26–29], 
through an array of sub-wavelength slits. 

For our structures, the fundamental absorption resonance occurs at a wavelength (~54 μm) 
that is much larger than the lateral dimension l (~12 μm). The thickness of the dielectric (1-5 
μm) in all our structures is also much less than the wavelength, so that we are beyond the cut-
off for TM planar waveguide modes. Thus, the wave that penetrates under the squares is 
evanescent and should be strongly damped. However, the propagation distance required for 
the wave to interfere with a wave originating from the opposite edge is itself subwavelength. 
Thus, waves from neighboring gaps may interfere to form standing waves under the stripes. 
Waves at these resonances will experience extra loss due to enhanced interaction with the 
lossy metals. 

Peng et al. [24] presented a model based on multiple reflections of rays and standing 
waves within similar sub-wavelength planar waveguides to interpret numerically-simulated 
absorption resonances. Methods based on propagation of rays, which hold in the limit of 
geometrical optics, are of questionable validity for subwavelength structures such as those 
under consideration. Nevertheless, the ray picture has known pedagogical value in 
understanding the modes of planar waveguides even near cutoff when the wavelength is 
comparable to spacing between the conducting plates [30], even though this situation is 
similarly outside the regime of geometrical optics. Thus, we suspend doubt until this theory 
can be compared with experiment below. 

By symmetry, only an odd number of reflections b (for “bounces”) is possible from the 
top and bottom metals of the waveguide. Figures 1(a) and (b) present ray diagrams that 
illustrate resonances with one and three bounces, respectively. The optical path lengths of the 
indicated resonances are different, so that we expect corresponding absorptions to occur at 
different wavelengths. For each closed path defined by one odd value of b, we might expect a 
series of harmonics corresponding to different numbers of half wavelengths between the end 
points. 
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We have assumed negligible contributions from next-nearest neighbor edges and beyond, 
which is reasonable considering the strong attenuation for wavelengths beyond cut-off. Thus, 
resonance wavelengths are expected to depend primarily on two critical cavity dimensions, 
namely the lateral dimension l of the stripe and the thickness of the dielectric t, but not 
significantly on the period (or gap dimension).In [24], Peng et al. ignored the possibility of a 
dependence on t by considering resonances based only on the horizontal dimension l, but 
predictions based on this assumption agree poorly with experiment. 

For rays as indicated in Fig. 1 the optical path length is 

 2 2 2Δ ( 1) ( ) / ( 1)  ,b n t l bλ= + + +  (1) 

Where n(λ) is the wavelength dependent refractive index of the dielectric (SiO2 in our 
devices), and b is the odd number of reflections. The total phase difference for rays traveling 
from one edge to the opposite edge, including a -πphase shift at each reflection is 

 
2

.bπφ π
λ
Δ= −  (2) 

Standing-wave resonances occur when φ is an integral multiple m of 2π, so that the mth order 
standing-wave resonance occurs at wavelength 

 2 2 22( 1) ( )
( , ) / ( 1)  ,

2

b nb m t l b
b m

λλ += + +
+

 (3) 

Where m = 0, 1, 2, 3…. The number of half wavelengths along the optical path at resonance is 
the odd number 2m + b. The fundamental resonance m = 0 for b = 1 is 

 2 2(1,0) 4 ( ) / 4 .n t lλ λ= +  (4) 

For b = 3, the fundamental m = 0 occurs at 

 2 28 ( )
(3,0) /16 .

3

n t lλλ = +  (5) 

The first harmonic m = 1 for b = 1 is 

 2 24 ( )
(1,1) / 4 .

3

n t lλλ = +  (6) 

For the range of t and l values in our device, we anticipate the three resonances Eqs. (4)-(6) in 
the wavelength range of our experiment with magnitudes λ(1,0) >λ(3,0) >λ(1,1) Generally, 
the wavelength dependence of n(λ) means that equations for the resonance wavelengths 
λ(b,m) must be solved graphically or numerically. 

Since the edge polarization is the source of the waves in the waveguide, the theory 
predicts that the resonance wavelengths are independent of the angle of the incident light that 
excites the polarization. 

The theory assumed translational invariance out of the plane of the page, forming a 1D 
grating of metal stripes, for which edge polarization can be excited only by TM polarized 
light. In the actual device, there are two orthogonal arrays of slits, creating a 2D array of 
metal squares. Thus, we expect the optical response of the actual devices to be polarization 
independent. 

The analytic theory predicts the wavelengths of expected resonance absorptions but not 
the strengths or widths of the resonances. To obtain these, finite difference time domain 
(FDTD) electro-dynamic numerical simulations were performed using Lumerical FDTD 
solutions (Version 8.9). The optical constants for gold were determined from the Drude model 
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using with parameters from [31,32]. SiO2 optical constants were taken from [33,34], for fused 
silica. In contrast to the analytic theory, the numerical calculations considered a fully 3D 
model corresponding to the actual experimental structures. The infinite array of surface 
squares was treated by considering a single unit cell with periodic boundary conditions in x 
and y directions. Perfectly matched layers (PML)–which absorb plane waves of arbitrary 
incidence angle, polarization, and frequency–are used to create perfectly absorbing boundary 
walls above and below the structure [35].These PMLs ensure that reflected and transmitted 
light from the sample does not return via reflection from the boundaries. A normally incident 
plane wave is considered with electric field polarized in y-direction, i.e. perpendicular to one 
set of gap edges. A frequency domain field and power monitor is used to measure the specular 
reflection. The reflectivity was measured using a 2D field monitor at 0 deg and spanning the 
unit cell. Transmittance is zero due to the metal ground plane. 

The corners on the squares were not accounted for in the analytic theory. Furthermore, the 
numerical calculations differ from the actual devices by having perfectly sharp corners and 
ideal metal. These may be sources of the small disagreements between theoretical, numerical, 
and experimental results. 

3. Experimental details 

The ground plane and dielectric were deposited using a multi-pocket electron beam 
evaporator without breaking vacuum. First, a 10 nm Cr sticking layer followed by 200 nm of 
gold were deposited on glass or Si substrate. A second 10nm Cr sticking layer was then 
deposited followed by evaporation of the SiO2 dielectric spacer. Square patterns of gold were 
fabricated on the SiO2 film by standard photolithography, DC sputtering, and lift-off. The 
sputtered gold sticks well to SiO2 without a sticking layer. Square dimensions and array 
period were determined by scanning electron microscopy (SEM). Their nominal values were 
10 and 20 μm, respectively. The thickness of the top gold squares is 200 nm as determined 
from SEM of a cleaved and polished cross-section. This thickness is much greater than the 
estimated electromagnetic penetration depth of 39 μm in our wavelength range. 

Reflectance was measured using a BOMEM DA8 Fourier spectrometer with globar 
source, 6 micron Mylar pellicle beam splitter, and room-temperature DTGS detector. Two 
different reflectivity accessories were used within the evacuated sample compartment. The 
first was at fixed angle for near-normal incidence, where the initially focused incident beam 
of the spectrometer was collimated by a concave mirror and was incident on the sample at an 
angle of 8 deg using a mirror assembly. The reflected light was diverged at the proper 
acceptance angle for the spectrometer’s detector module. The second reflectance accessory 
enabled variable-angle specular reflectance measurements for incidence angles of 20, 40, and 
60 deg. Reflectance R was obtained by dividing the raw reflected power spectrum with that of 
an optically thick smooth gold film. Transmittance through the sample is zero because the 
underlying gold film is optically thick. Thus, absorptance A = 1 – R. We assume negligible 
scattering because the squares are much smaller than the wavelength. 

4. Results 

Absorptance, A = 1 – R was determined from the numerically calculated specular reflectance 
R as a function of geometrical parameters for the device. Figure 2(a) presents a color-map of 
A for square dimension l = 11.7 μm as a function of wavelength and dielectric thickness t, 
which is varied from 1 to 4 μm. Two strong absorption bands redshift with increasing t in the 
considered wavelength range 20 to 80 μm. The longer wave band is identified as the 
λ(1,0)resonance, while the shorter wave band is λ(3,0).There is also a weak absorption band 
with weaker t dependence that emerges below the lowest strong band at about 25 μm, and this 
we identify as the λ(1,1) resonance. 
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Fig. 2. Color map of absorptance as a function of wavelength and (a) dielectric thickness or (b) 
size of squares. Analytically- (dashed line) and numerically- (solid line) calculated resonance 
wavelengths as a function of (c) dielectric thickness, (d) size of squares. 

Figure 2(b) presents Aas a function of λ and l for t = 3 μm. The identification of the bands 
is the same as in Fig. 2(a). Comparison of the two parts of Fig. 2 shows that the dependence 
of λ(1,0) on l is stronger than it is on t, but for λ(3,0)the opposite is true. Moreover, the 
strengths of the absorptions are sensitive to the value of t, but not to the value of l. 

Additionally, Fig. 2 shows evidence of another absorption which stays at 20 μm 
wavelength along the bottom edge for the complete ranges of tand l. This is attributed to 
secondary and coincident solutions for λ(1,0),λ(3,0), and λ(1,1),which appear because of 
strong dispersion of SiO2 near 20 microns wavelength. These identifications were determined 
from the graphical intersection of the refractive index spectrum (λ) for SiO2 and the linear 
curve for n(λ) given by Eqs. (4)-(6), as was done in [21]. 

Figure 2(c)-(d) compares the analytically and numerically calculated resonance 
wavelengths. These calculations used the same values of n(λ) from [33,34].The curves 
calculated from Eqs. (4)-(6) agree sufficiently well with the numerically-determined bands to 
confirm the mechanism of the absorption and the identity of the resonances. The small 
differences may be due to the different assumptions in the analytic and numerical calculations 
already mentioned. 

 

Fig. 3. Re(Ez) for λ(1,0), λ(3,0)and λ(1,1) of absorber with l = 11.7 μm and t = 3 μm. 
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Figure 3 presents color-maps of the real part of the electric field component Ez, i.e. the 
component normal to the plane of the device, for the λ(1,0), λ(3,0)and λ(1,1)resonances. The 
images are side views of one period of the structure. The ground plane occupies the bottom of 
each frame. One of the squares appears centered horizontally near the top of the frame. The 
normally incident light is polarized in the plane of the figure, and this causes a polarization 
along the top surface of the square. Along the bottom surface, an opposite polarization 
appears. With charge piling up at the edges of the squares, a strong vertical polarization 
appears at each edge. This oscillating dipole is responsible for radiation that appears in the 
subwavelength cavity under the square. The plotted Ez component appears only because of 
this edge dipole, since the incident wave had no vertical component. A qualitatively similar 
picture is evident in the simulations presented by [24]. 

Figure 3 shows that for the λ(1,0) resonance, Ez changes sign once in going from the left 
edge to the right edge, which is consistent with the observation already made that for this 
resonance one-half wavelength should fit along line ABC (Fig. 1). 

For λ(3,0)Ez changes sign thrice from the left edge to right, with a node at the center line, 
as expected if 3 half-wavelengths fit along line PQRST in Fig. 1. The regions of a particular 
sign of the field are unevenly distributed under the square, being highly localized near the 
edge and more diffuse away from the edge. Note that the color scale is reduced 3x for λ(3,0)in 
comparison with λ(1,0). Since power loss goes as the square of the field, we expect this 
shorter-wave absorption to be correspondingly weaker. This is confirmed in Fig. 2, where 
since the two strong peaks are both saturated at unity absorbance, the weaker absorption 
manifests as a decrease in width. 

 

Fig. 4. Simulated absorptance as a function of wavelength and period of the squares. The size 
of the squares and thickness of the dielectric are l = 11.7 microns and t = 3 microns, 
respectively. 

The color scale for λ(1,1)is 30 x smaller than for λ(1,0)so that this band should be much 
weaker than the others, in agreement with Fig. 2.In Fig. 3, considerable intensity for λ(1,1)is 
found beyond the edges of the square, and it is more difficult to deduce the expected three 
half wavelengths between the edges. Following the horizontal centerline, Ez clearly changes 
sign twice, consistent with 3 half wavelengths from left to right. On the other hand, following 
a horizontal slice just below the square, it appears that the field changes sign 4 times, 
suggesting 7 half wavelengths. 

The mean evolved heat density per unit time goes as ε″ |Ε|2 [36] where the permittivity’s 
imaginary part ε″ at the fundamental resonance in Au and SiO2 has the values 44985 and 0.28, 
respectively [31,32]. Although E penetrates the Au only to a depth of ~40 nm, so that the 
volume of significant heat dissipation in Au is very small (skin effect), gold’s much larger ε″ 
causes the total energy dissipated in the Au to exceed that in the dielectric by more than two 
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orders, as shown by numerical integration of simulated field distributions (e.g. Figure 3). The 
dissipation in top patches and ground plane is comparable. Hence, the absorption in such 
metal-dielectric-metal structure happens mainly in the metal. Similar conclusions were made 
for comparable structures designed for the near IR [18]. 

The analytical formulas Eqs. (4)-(6)for the resonance wavelengths are independent of the 
period of the surface structures. To confirm, we performed simulations as a function of 
period. Figure 4 presents absorptance A = 1-Rfound from the numerically calculated R for 
normal incidence specular reflectance as function of wavelength and period of the surface 
structures. The size of the squares and the thickness of the dielectric were fixed atl = 11.7 µm 
and t = 3 µm. Between ~20 and 40 micron period, i.e. for gaps of ~8 – 28 μm, there is no 
change in the position of the λ(1,0)resonance, in agreement with the analytic theory. Below 20 
μm period, for gaps between squares decreasing from8 to 3 μm, the fundamental resonance 
red-shifts and slowly weakens. From Fig. 3, it is clear that the Ez component extends at least 2 
microns beyond the edge of each square, so it is reasonable to expect that neighboring 
opposite dipoles begin to load and destructively interfere with each other at gaps smaller than 
8 microns, thus red-shifting and weakening the resonance. Analysis of spectral line widths Δλ 
for the fundamental from the data in Fig. 4 shows that the quality factor Q = λ/Δλ increases 
from 2.7 to 5.5 as the period increases from 15 to 40 μm, presumably due to reduced 
interactions between unit cells. The weakening with increasing period we attribute to reduced 
fill-factor. 

The resonance near 28 μm wavelength shows considerable structure in Fig. 4. A branch 
with little period dependence we identify as the λ(3,0)resonance with none of the redshift that 
was observed for λ(1,0) at the smallest period, presumably due to less interaction between 
neighboring dipoles for these shorter-wavelength and weaker fields. At about 27 μm period, a 
strong feature with linear period dependence emerges and reaches ~42 μm wavelength by 40 
μm period. A second weaker mode emerges near 30 μm period and reaches 33 μm wave 
length by 40 μm period. These two modes are interpreted as Wood’s Anomalies of Rayleigh 
type [37], where emergence of the pth diffracted orders into the air above the grating removes 
intensity from the specularly reflected beam. The diffraction equation a(sin θp − sin θ) = pλ, 
with incidence angle θ = 0 and diffracted angle θp = π/2, gives λ = a/p, which agrees with the 
observed linearity of the two features and reasonably well with the observed wavelength 
values. 

 

Fig. 5. SEM image of a) sample surface and b) cross-section. 
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The band at 20 microns wavelength, which corresponds to secondary solutions for the 
λ(b,m) due to the strong dispersion of SiO2,exists only for periods between 15 and 20 μm, 
before evidently blue-shifting out of the frame. This might be explained by a reduction in the 
effective index of the dielectric as the proportion of metal is decreased [38], which would 
decrease the resonance wavelength according to Eq. (4). 

Figure 5 presents SEM images of a) the sample surface and b) a cleaved and polished 
cross-section. Such surface images were used to determine the device dimensions, which are 
inputs for the analytical and numerical calculations. The latter also depend on the degree to 
which the corners were rounded, which was also determined from the images. The cross 
section was used primarily to confirm the thickness of the oxide. 

Figure 6 presents reflectance spectra for samples with different SiO2thicknesses (t). The 
nominally identical l values in fact vary from sample to sample by up to ~15%, due to 
experimental processing uncertainties such as baking time, UV light intensity, development 
time, etc. With increasing t the peak of the absorption shifts to longer wavelength, as 
predicted by Eq. (4) for the fundamental λ(1,0). The strength of the fundamental 
λ(1,0)absorption varies between 62 and 95% for the different values to t. The deepest 
absorption is achieved at 53.5 microns wavelength (5.6 THz) when t = 3 microns. This is in 
agreement with numerical results plotted in Fig. 2(a). The dashed line represents numerical 
results for t = 3.5 and l = 11.7μm sample at normal incidence, showing good agreement with 
experiment. 

 

Fig. 6. Experimental reflectance spectra at 8 deg angle of incidence for different samples with 
numerical labels indicating SiO2 thickness and square size, (t, l), respectively. Spectra for 
successively smaller t values are offset vertically by 0.2 units for clarity. The dashed line is the 
result of numerical calculation for structure values (3.5, 11.7) at normal incidence. 

The λ(3,0)mode emerges into the frame Fig. 6 at ~25 μm when t = 1.8 μm, and it redshifts 
finally to ~33 μm with increasing t as predicted. Evidence for the expected but weak 
λ(1,1)absorption may be the asymmetry of the band due to a short-wave shoulder near 30 μm 
wavelength when t = 4.5 μm. There is evidence for the secondary solutions of λ(b,m) due to 
the strong dispersion of SiO2 at the short wave edge of the frame, as mentioned in the 
discussion of Fig. 2(a). 

Figure 7 plots the experimental peak wavelengths of modes λ(1,0) and λ(3,0) from Fig. 6 
as a function of theoretical resonance wavelengths according to Eqs. (4) and (5).The straight 
line is λ(b,m) = λ(exp). The agreement between observed resonance wavelengths and analytic 
theory is excellent. 
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Fig. 7. Theoretical resonance wavelengths λ(b,m) vs. experimental resonance wavelengths 
λ(exp) The symbols are the λ(1,0) and λ(3,0)experimental data for different structure 
dimensions l and t. 

Figure 8 presents numerical absorptance spectra as a function of angle of incidence and 
wavelength for TM and TE light for a structure with l = 11.7 and t = 3μm.At normal 
incidence there is no distinction between TM and TE modes, and the calculated spectra are 
reassuringly identical. For TM polarization, the strength of the fundamental λ(1,0) remains 
constant up to 70 deg angle of incidence, with the main effect being a 4% blueshift beyond 60 
deg. The behavior of the λ(3,0)band is more complicated. A strong satellite emerges at about 
20 deg and redshifts linearly with angle. This is interpreted as a Wood’s anomaly as discussed 
already in regard to Fig. 4. This is confirmed using the diffraction equation with the angle of 
the first diffraction mode θ1 = 90, namely θ = Arc sin(1-λ/a). Otherwise the λ(3,0) band shows 
mainly a small blue shift and intensity variation with angle. 

For TE polarization, the position of the modes is almost independent of angle, and the 
main effect is a weakening that appears only beyond 40 deg. Interestingly, the strength of the 
absorption falls off much more slowly than the projected area of the square on the propagation 
direction (cosθ), showing that the incidence light remains effective at driving the surface 
polarization that leads to the edge dipoles even at large angles. The diffraction mode that 
appears for TM shows up only weakly in TE polarization. 

Figure 9 compares experimental and numerical reflectance spectra for TM and TE 
polarization at angles of incidence 20, 40 and 60 degrees. Experimental data match well with 
simulations, particularly for the fundamental absorption at 54μm. The Wood’s anomaly also 
appears in the experimental data, appearing most prominently in TM polarization moving 
from ~32 to ~38μm wavelength with increasing angle. 

6. Discussion 

The analytical formulas Eqs. (4)-(6) for the resonance wavelengths are independent of the 
period of the surface structures. For fixed square size, as the period gets smaller, the gaps 
become smaller. As the edges get closer, the fields from one edge dipole may begin to interact 
with the neighboring dipole, and since neighboring dipoles are oppositely oriented, their fields 
would tend to cancel. The closing of the gaps should eventually cause the absorption to 
disappear. As the gaps close, a weakening and red-shift are expected due to superposition of 
opposite dipoles and increased inertia from coupled charge oscillations. Both weakening and 
red-shift were observed for the fundamental λ(1,0) with reduction in period in the numerical 
calculations presented in Fig. 4. However, this effect did not appear until the gaps had been 
reduced to just 2 microns, which is only 16% of the metal-square dimension and only 4% of 
the resonant wavelength. 
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Fig. 8. Numerically calculated absorptance as a function of angle of incidence and wavelength 
for (a) TM and (b) TE polarization. 

On the other hand, as the period is increased, different effects come into play. For periods 
comparable to the wavelength, diffraction orders emerge into the space above the device, 
taking some of the power from the specularly reflected beam, an effect known as Wood’s 
anomaly of Rayleigh type [37]. Since both experiment and numerical calculations determine 
the intensity of the specularly reflected beam, these diffraction features appear in the 
reflectance spectrum artificially as absorptions, as in Figs. 4, 8, and 9. 

For periods much larger than the square size, the absorption for wide beams would be 
weakened by the decrease in fill factor, but the strength of the absorption at each square 
should remain about the same. Indeed, diffraction-limited reflection spectral microscopy on 
isolated squares shows resonance wavelength and line shape to be the same, though 
apparently ~1.4 times weaker, than for a measurement on our periodic array with same spot 
size [25]. Diffraction diffuses the apparent absorption at the center of an isolated square, 
explaining the weakness compared to the period array as a measurement artifact. 

That the absorption depends only weakly on angle of incidence is explained by the 
proposed mechanism, in which the incident light polarizes the squares, leading to oscillating 
dipoles, which are the sources of new waves that propagate into the dielectric and form lossy 
standing waves under the squares. The existence of such dipoles is supported by the 
electrodynamic simulations (Fig. 3). The standing wave model is supported by the agreement 
with the dependence on geometrical parameters, including dependence on the dielectric 
thickness, which had been previously ignored in [24]. 

Interestingly, the appearance of edge dipoles seems to depend on the thickness of the 
metal square relative to the penetration depth in that metal of the incident beam. When the 
penetration depth is much less than the thickness, top and underside polarizations are 
opposite, and edge dipoles appear, as in our case and as seen in the simulations of Peng et al. 
[24].But when the penetration depth is about the same as the surface-metal thickness, top and 
underside polarizations are the same, and no edge dipoles appear, as in the work of Hao et al. 
[18]. Penetration depth of electromagnetic fields is calculated at far-infrared and longer 
wavelengths according to the formula Sqrt[2ρ/μ0ω] in the quasi-static approximation, where ρ 
is the resistivity of the metal and μ0 is the vacuum permeability. It may be also calculated at 
all wavelengths from the extinction coefficient κ(imaginary part of the complex refractive 
index) for the metal according c/κω. At far-IR and longer wavelengths, the two formulas give 
the same value (~35 nm), but below far-IR wavelengths, the quasi-static approximation is 
inapplicable, and only the latter formula is accurate. We earlier reported an experimental 
investigation of the effect of top metal thickness [21]. We found no difference in the position, 
strength or line-width of the fundamental for Au-square thicknesses of 150 or 50 nm. 
However, as the thickness became comparable to (30 nm) or smaller than (10 nm) the 
penetration depth, the resonance significantly weakened, broadened, and blue-shifted, such 
that the position of the fundamental longer agreed with the resonance position predicted by 
Eq. (4). 
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We next contrast our results and interpretation with those of other authors for nominally 
similar absorber structures. In [18],Haoet al. present numerical results for a periodic array of 
Ag squares on Al2O3 on Ag ground plane, which are scaled to have absorption resonances at 
visible wavelengths. This group presented experimental demonstration of resonant absorption 
for one set of geometrical parameters at one angle of incidence in [19]. Notable similarities to 
our work include the appearance of higher order resonances, transmission through the 
subwavelength gaps between the squares, and standing-wave field distributions in the sub-
wavelength space in the dielectric beneath the squares. A notable difference is that their 
calculated resonance wavelengths increase with decreasing dielectric thickness, opposite to 
our analytic, numerical, and experimental results. A hypothesis for this difference is that the 
visible spectral regime of [18], is closer to the plasma resonances of their metal squares, and 
these lie closer to the ground plane relative to their lateral dimensions. The dependence on 
dielectric thickness in [18], is qualitatively similar to the redshift observed in high-electron 
mobility transistors when the separation of between two-dimensional electron gas and the 
metal surface gate is decreased [39–42].A second notable difference is that Haoet al.’s 
simulations show no vertically-oriented oscillating edge dipoles, we attributed in the previous 
paragraph to the thinness of their metal squares. Our Eq. (3) gives resonance wavelengths for 
the structures in [18], that are a factor of ~2 too small, even when account is taken for 
dispersion that causes reflection phase shifts with magnitudes somewhat smaller than π in the 
considered spectral range. Thus, there are apparently dimensional and wavelength regimes 
where the standing wave model works poorly. For the dimensions and wavelengths of [18], a 
microscopic model based on plasmons [19], rather than standing waves may be appropriate. 
However, since no comparison of numerical or experimental resonance wavelengths to 
predictions of an analytic theory was made in [18,19], their absorption mechanism remains 
somewhat speculative. 

 

Fig. 9. Angle and polarization dependence of experimental (solid lines) and numerically 
calculated (dashed lines) reflectance spectra. Device parameters were l = 11.4 μm and t = 2.5 
μm. Polarization is TM (left column) and TE (right column). Angle of incidence is indicated. 
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In [17], Diem et al. presented numerical calculations of an absorber comprising tungsten 
stripes on silicon nitride on tungsten ground plane. The structure is nominally similar to the 
model structure used for our analytic theory derivations. For the assumed dimensions, the 
resonance appeared at 4.28 μm in the mid-IR. As in our device all dimensions are sub-
wavelength, and all the materials used are compatible with standard silicon processing. In 
contrast to our device, the width of their stripes was less than the gaps between them and less 
than the dielectric thickness. Also unlike our device, their simulated field distribution does not 
show standing waves under the stripes. No analytic formula is given for the resonance 
wavelength and no comparison to experiment is provided. Our Eq. (3) predicts the higher 
order resonance λ(3,0) at 4.21 μm, but the near agreement is probably coincidence given the 
dissimilar field distributions. Since only the magnitude of the field is given in the field 
distribution plot, it is impossible to know the nature of the polarization in their squares. 

Chen proposed a theory based on interference between rays reflected from a periodic 
metal surfaced pattern and rays reflected from a metal ground plane separated by a dielectric 
spacer [23]. Due to the complex permittivity of the metal and dielectric, there are phase shifts 
on reflection and transmission that vary strongly with wavelength, allowing destructive 
interference between the partial front-surface reflections and multiply reflected waves in the 
dielectric, even though the dielectric thickness is much smaller than the wavelength. This 
results in a resonance with near-zero total reflectance and correspondingly strong absorption. 
The phase shifts and wave amplitudes needed in the Fresnel-Equation analysis were 
determined from numerical simulations. No analytical formula was presented to predict the 
resonance wavelength, which for their simulation parameters was 306 μm, and there was no 
comparison to experiment. Chen’s model does not depend on the size of the front-surface 
metal features, in strong contrast to what we and others report. Chen’s resonance wavelengths 
red-shift by about the same amount as we observe with increasing dielectric spacer thickness 
(10% with 4-fold change in thickness).Chen’s condition for destructive interference should 
depend strongly on angle of incidence, which was not considered in [23], and this disagrees 
with the omni-directional nature of the absorption seen in Fig. 9 and widely reported by 
others. The mechanism proposed by Chen is similar to that used to describe Fabry-Perot type 
absorbers [43], such as the optical Salisbury screen [38]. 

In [14],Ye et al. present an LC resonance model, in which the self-inductance L for each 
unit cell in the periodic array is determined by the magnetic energy stored between surface 
structure and ground plane, and where parallel capacitors are formed between each half of the 
surface plate and ground plane. The resonance wavelength is proportional to the dimension of 
the surface structure only, but uncertainty in estimating L and C values causes the resulting 
analytic formula for resonance wavelength to have only order-of-magnitude accuracy when 
compared to experiment [21]. Furthermore, the lack of a dependence on dielectric thickness 
for the resonance wavelength so estimated, and the absence of higher order resonances, 
contradict results presented here and by others. No field distribution in cross section is 
presented, so it is impossible to compare the nature of the polarization in the surface structure. 

The standing wave model proposed by Peng et al. [24],and elaborated here works well. 
The resonance wavelength depends on the dimension of the metal squares, as supported in 
[14,18–21,25], but not on period, at least until period becomes comparable to the square 
dimension enabling squares to interact. We showed that the dependence on dielectric 
thickness needs to be retained to obtain accurate agreement with experiment and simulation, 
in contrast to assumptions made by Peng et al. [24]. 

7. Summary 

A~3-μm-thick structured film comprising an array of metal squares, a dielectric spacer, and a 
metallic ground plane was demonstrated to provide 95% absorption for the fundamental band 
at 53.5 μm wavelength, with additional resonances appearing at shorter wavelength. These 
bands were observed to be only weakly dependent on polarization and incident angle. The 
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number, center frequency, dependence on square dimension and dielectric thickness, and lack 
of dependence on period of the array are all well explained by a model in which the incident 
beam excites oscillating dipoles at the edges of the squares, which are sources for standing 
waves that occur in the sub-wavelength space beneath individual squares. The analytic model 
and physical interpretation of edge dipoles and standing waves are supported by numerical 
calculations, which give field visualization and spectral line shapes in agreement with 
experiment. These structures have application as wavelength selective coatings for far-IR 
bolometers. 

Acknowledgment 

This work was supported in part by an award from the Florida High Technology Corridor (I-
4) program. 

#239650 Received 23 Apr 2015; revised 30 Jun 2015; accepted 30 Jun 2015; published 15 Jul 2015 
© 2015 OSA 10 Aug 2015 | Vol. 23, No. 16 | DOI:10.1364/OE.23.020366 | OPTICS EXPRESS 20380




