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A far-infrared laser concept based on intersubband transitions of holes in p-type periodically
delta-doped semiconductor films is studied using numerical Monte Carlo simulation of hot-hole
dynamics. The considered device consists of monocrystalline pure Ge layers periodically
interleaved with delta-doped layers and operates with vertical hole transport in the presence of an
in-plane magnetic field. Population inversion on intersubband transitions arises due to light-hole
accumulation in E 1 B fields, as in the bulk p-Ge laser. However, the considered structure achieves
spatial separation of hole accumulation regions from the doped layers, which reduces
ionized-impurity and carrier-carrier scattering for the majority of light holes. This allows a
remarkable increase of the gain in comparison with bulk p-Ge lasers. Population inversion and gain
sufficient for laser operation are expected up to 77 K. Test structures grown by chemical-vapor
deposition demonstrate feasibility of producing the device with sufficient active thickness to allow

quasioptical electrodynamic cavity solutions. © 2005 American Institute of Physics.

[DOL: 10.1063/1.1989430]

INTRODUCTION

Recent terahertz semiconductor-laser developments in-
clude intersubband p-Ge lasers,' lasers based on optically
pumped donors in Si,? quantum cascade lasers (QCLs),™
and proposed p-type Si/SiGe quantum cascade lasers.® All of
them suffer from a rapid increase in far-IR lattice absorption
with temperature,7 to offset which requires higher gain and
hence higher active carrier concentration, until the popula-
tion inversion becomes negatively impacted by impurity and
carrier-carrier scattering. Terahertz QCLs have achieved
continuous-wave (CW) output and operation temperatures
above liquid nitrogen via a design with extreme tolerances of
quantum-well and barrier thicknesses. This has required
growth by molecular-beam epitaxy (MBE), which limits the
QCLs active layer thickness to ~10 um, requiring complex
and lossy cavity solutions.

Among all semiconductor terahertz lasers listed above,
only the p-Ge laser mechanism for generation of stimulated
emission on direct optical intersubband transitions for hot
holes has potential for wide tunability (50—140 cm™'). The
inverted population grows at certain ratios of the applied
crossed electric and magnetic fields at low temperatures,
when light holes are accumulated on closed trajectories be-
low the optical-phonon energy, while heavy holes undergo
rapid optical-phonon scattering (Fig. 1). The light-hole life-
time, responsible for the inversion population and for the
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gain, is determined by acoustic-phonon scattering, ionized-
impurity scattering, and carrier-carrier interaction. These fac-
tors limit p-Ge laser operation to liquid-helium temperatures
and low carrier concentrations (3 X 10'3-3 X 10" cm™).
The small signal gain in p-Ge lasers usually does not exceed”
0.1 cm™!, which is smaller than germanium lattice absorption
at 50 K (Fig. 2).” This bounds the operating temperature and
(because of Joule heating) the duty cycle of bulk p-Ge lasers,
which usually operate below 20 K and at duty cycles
<~1%.

This paper presents a terahertz laser concept based on
intersubband transitions of holes under vertical transport in
crossed electric E and magnetic B fields in a planar periodi-
cally doped p-Ge/Ge structure (Fig. 3). The spacing between
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FIG. 1. Mechanism of intersubband population inversion and far-infrared
gain for p-Ge in crossed electric and magnetic fields. The left part of the
diagram shows light- and heavy-hole trajectories in coordinate space. The
right part of the diagram shows light- and heavy-hole subband energies vs
momentum wave vector together with trajectories and vertical intersubband
radiative transitions. The optical-phonon scattering threshold is indicated by
the horizontal line 2w, in both parts, and optical-phonon emission by heavy
holes is indicated by the wavy arrows.

© 2005 American Institute of Physics
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FIG. 2. Far-infrared absorption in Ge. Temperature-dependent lattice ab-
sorption (see Ref. 7) is plotted as connected symbols, with temperature in K
indicated in the legend. The free-carrier absorption for hole concentration of
2% 10" em™ calculated for typical bulk p-Ge distribution functions is plot-
ted as a solid curve.

doped layers is considered to be 300—400 nm, which is
wider than the average light-hole Larmor radius at 1-3 T
applied B fields. The design achieves spatial separation of
hole accumulation regions from the doped layers, which re-
duces ionized-impurity and carrier-carrier scatterings for the
majority of light holes, allowing significant increase of the
total carrier concentration while maintaining sufficient light-
hole lifetime. The resulting increase in gain over the bulk
p-Ge laser promises to raise maximum operation tempera-
tures to 77 K. At the same time the proposed laser retains the
most attractive feature of the hot-hole intersubband mecha-
nism, which is its wide tunability over the spectral range of
2—4 THz. Preliminary investigation of this structure was re-
ported in Ref. 9.

THEORETICAL METHODS

Hole dynamics, hole distribution functions, and the gain
on direct optical light-to-heavy hole transitions are calculated
by the Monte Carlo simulation method using classical mo-
tion equations and hole scattering probabilities.lo’11 A classi-
cal approach to the hole dispersion law and equations of
motion is justified here by the moderate magnetic fields and
the absence of heteroboundaries. At 1 T magnetic field, the
quantization energy of Landau levels is AEz=2.7 and
0.33 meV for light and heavy holes, respectively. Hence, the
Landau quantization energy of light holes is sufficiently less
than the average hole energy E,,~ 15 meV to neglect quan-
tum effects. Analysis of Landau quantization and other quan-
tum effects in crossed electric and magnetic fields for the p
-Ge lasers is reported in Refs. 12 and 13. We can neglect
quantum confinement effects because the considered struc-
ture has no heteroboundaries, only delta-doped layers.

Time- or ensemble-averaged momentum and position
yield the hole distribution functions f; ,(k,r) [subband (I, %),
wave vector k and coordinate r]. The distribution functions
were considered uniform in the horizontal planes according
to the geometry of the problem. Two valence subbands (light
and heavy holes) with isotropic and parabolic dispersion
laws are considered: E,’h=h2k2/ 2m j,. The isotropic approach
is justified by the relatively small warping of the germanium
valence band. The standard Rees rejection technique chooses
among the scattering processes.lo The rate of each scattering
process is given by a temperature-dependent analytic expres-
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FIG. 3. Spatial separation of carriers and intersubband mechanism of tera-
hertz amplification for delta-doped multilayer Ge structures in E X B fields.
The dark areas represent high concentrations of light holes (upper band) and
heavy holes (lower band). The shading scale is in units of 10'> cm™ meV~".
The spatial dependence of the zero-energy edge of the hole distribution
reflects the self-consistent potential profile. Acceptor concentration profile
N, and total hole concentration p across the structure are plotted in units of
10" cm3. The simulation parameters were E=1.5kV/cm, B=1.15T, T
=10 K, and N,,=8 X 10" cm™. Schematic light- and heavy-hole cyclotron
trajectories are drawn to scale in coordinate space.

sion. Optical-phonon scattering is treated in a deformation
potential approximation.m’15 Acoustic-phonon scattering is
simplified according to Ref. 16. Inelasticity for acoustic-
phonon scattering is included.'” The Brooks-Herring model'®
with the inverse Debye screening length and the Yukawa
potential was used for ionized-impurity scattering.

An accurate treatment of carrier-carrier scattering is es-
sential for our simulations because high average carrier con-
centrations are a goal. Traditionally, carrier-carrier scattering
was taken into account by doubling the quantity of scattering
centers compared with the acceptor concentration.*'” In con-
trast, angular-dependent four-dimensional (three-dimensional
(3D) momentum space and one-dimensional (1D) vertical
coordinate) distribution functions of light and heavy holes
are used here to calculate carrier-carrier scattering probabili-
ties and scattering angles.19 For the Coulomb interaction po-
tential with a Yukawa-type screening, the transition rate for
the k; +k,=k;+k, process can be calculated as

2m e? exp(= Br; - 1,|) :
Pioza=— (Vs W) ,)

fL 477880|r1 —1’2|

XOE, +Ey—Es—E,), (1)

where k; is the hole wave vector, % is the Planck constant, e
is the electron charge, B is the screening parameter, € is the
relative dielectric constant, g, is the permittivity of free
space, and E; is the hole kinetic energy. The two-particle
states were taken as products of single hole wave functions
in the ith state, given by
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Ji(k;,r) = exp(ik;r)

> anilk)y. (2)

my=+3/2,£1/2

The afm/f are basis functions in the Luttinger-Kohn
representation.'**" The coefficients cm/Jz(k) are known func-
tions of the direction of hole motion.'* There are two sets of
four coefficients corresponding to light holes and two sets
corresponding to heavy holes. It is the angular dependence of
these coefficients that gives an angle dependence to the prob-
abilities in Eq. (1). The total single hole transition probability
mediated by hole-hole interaction is

P(ky) = f Pioosa(ky Ko ks, ky,v1,00,03,04)
Xfo,(K)f,,(kp)d €2 dkydKsdky, (3)

where f, is the hole distribution function in vth subband and
dQ, is the solid angle element for the direction of incidence
of the first hole. A similar formula is used for ionized-
impurity scattering (without the factors and distribution func-
tions for the second hole). These integrations are performed
using the distribution functions calculated from the Monte
Carlo simulations.

The Monte Carlo code was specially written to allow
spatially varying impurity and hole-hole scattering probabili-
ties for simulation of carrier dynamics with stratified param-
eters (Fig. 3). In order to solve the problem self-consistently,
taking into account internal electric fields caused by charge
separation, infinite-charged planes are assumed, which is
well justified by the structure geometry. The redistribution of
space charge, which we find to become important at average
concentrations above 10'* cm™, is included as an additional
“internal” electric field E;,. Iteration determines the self-
consistent solution of the Poisson equation and thereof the
spatial carrier distribution and potential profile. The total
electric field across the structure is given by E=-d¢/dx
=Eint Eyppi, Where E,) is the applied external field and ¢ is
the electric potential. For any distribution of holes p(x) and
negatively charged acceptor impurity centers N(x), the inter-
nal electric field along the period of the structure d is

Eip(x) = Ey+ LJ [p(x) = N(x)]dx. 4)
€€pJo

Due to periodicity and total neutrality of the crystal,

Ein(x) =E(x+4d), (%)
and
d
f Ejp(x)dx=0. (6)
0

For these particular simulations we assumed zero compensa-
tion, so that all introduced doping centers are shallow accep-
tors.

The small signal gain is calculated as the difference be-
tween the gain on direct intersubband (light to heavy hole)
transitions and free-carrier absorption assisted by phonons
and ionized impuritie:s.”’21 The intersubband gain is given by
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me*h
alh(rahv) = e f (2 )1|§lh(k |
X[fl kvr) _fh(k’r)]g[sl(k) - 8}1(k) - hU],
(7)

where the distribution functions f;,(k,r) for light and heavy
holes are simulation outputs, &;,(k) are the hole energies, m,
is the electron mass, € is the relative dielectric constant, ¢ is
the speed of light in vacuum, and ¢, is the unpolarized os-
cillator strength.22 The light- and heavy-hole distribution
functions are normalized to the total local hole concentration,

p(r)= f [fik,r) + £ (K, r)] (8)

(2 )3

Analysis of various scattering-mechanism contributions
to free-carrier absorption is given in Ref. 21. Up to liquid-
nitrogen temperatures and impurity concentrations of
~10-10' ¢cm™, the main contribution comes from the
optical-phonon emission by heavy holes.

CALCULATION RESULTS

Applied fields and the period of the structure are chosen
so that the average light-hole orbits are smaller than the dop-
ing period while heavy holes suffer strong impurity scatter-
ing at the doped layers. Figure 3 presents the calculated
light- and heavy-hole energy distributions in the multilayer
delta-doped Ge structure as functions of space coordinate
and energy. The calculated energy-spatial distribution of light
(upper band) and heavy (lower band) holes is presented in
units of 10'> cm™ meV~!. The spatial dependence of the
zero-energy edge of the hole distributions reflects the self-
consistent potential profile. The spatial separation of light
and heavy holes across the structure period for transport in
E X B fields is revealed in the density map of the distribu-
tions shown in Fig. 3. Heavy holes are preferably concen-
trated near the doped layers and scatter on optical phonons
(37 meV) and ionized impurities. Meanwhile, light holes ac-
cumulate below the optical-phonon energy without optical-
phonon scattering. Moreover, their distribution function is
maximum in undoped regions, where ionized-impurity and
carrier-carrier scattering rates are suppressed.

Although impurity scattering has been eliminated from
the light-hole accumulation regions of our device, hole-hole
scattering remains, and this is the primary scattering mecha-
nism responsible for the light-hole lifetime and thus for the
final performance of the device. The total light-to-heavy in-
tersubband scattering rates on carriers and impurities [Eq.
(3)] are compared in Fig. 4 as a function of the scattering
center concentration for two different values of light-hole
kinetic energy. (These are nonradiative transitions that de-
populate the upper laser level.) Figure 4 reveals that hole-
hole intersubband scattering rates are consistently lower than
those for ionized-impurity scattering. Thus, the elimination
of impurity scattering from light-hole accumulation regions
and the comparatively ineffective light-to-heavy band relax-
ation caused by hole-hole interaction permit more than a
factor of 2 increase in carrier density in comparison with the
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FIG. 4. Carrier-carrier and ionized-impurity scattering rates for the light-to-
heavy hole nonradiative intersubband transition averaged over typical
p-Ge laser light- and heavy-hole distribution functions (E=1.5 kV/cm, B
=1.1 T, and T=10 K) vs scattering center concentration. The values in the
legend indicate the initial light-hole kinetic energy in meV.

bulk p-Ge laser. The suppressed heavy-hole concentration in
these undoped regions, revealed in Fig. 3, favors even further
concentration increase and a corresponding increase in gain.

Figures 5 and 6 present the calculated gain spectra for
the same concentration but two different applied field condi-
tions. The average carrier concentration chosen is already
about a factor of 10 larger than usual for bulk p-Ge lasers.
Gain is plotted as a function of the optical transition wave
number and vertical distance within the structure for two
structure periods. Each figure shows results for three differ-
ent temperatures: 10, 50, and 77 K. A dark line indicates the
intersection of the gain surfaces with the horizontal plane of
zero gain. The gain remains positive in the undoped regions
of the structure up to lattice temperatures of 77 K. Compari-
son of Figs. 5 and 6 shows that higher applied fields are
required to support the nonequilibrium distribution needed
for positive spatially averaged gain at higher lattice tempera-
tures because of the thermalization of holes on phonons.

Spatially averaged gain spectra at 10 and 50 K for the
two applied field conditions of Figs. 5 and 6 are presented in
Fig. 7 together with lattice absorption spectra.’” Gain values
of 0.5-0.7 cm™! in the spectral range of 60—140 cm™' ex-
ceed the maximum lattice absorption at 10 K by a factor of
5-7. At T=50 K peak gain (0.15-0.2 cm™!) still exceeds ab-
sorption for the higher fields. Additional calculations at even
higher fields (E~3 kV/cm and B~3 T), shorter period (d
~200 nm), and higher concentrations (N, ~1-2
% 10" cm™) suggest sufficient gain for 77 K laser opera-
tion. Note that at these magnetic fields and structure periods,
the classical approach in the simulations becomes limited
due to Landau quantization considerations. However, as was
shown previously,23 the spectrally smooth small signal gain
calculated in the classical approach is in good agreement
with the spectrally averaged gain calculated in a quantum
approach.

Figure 8 presents the dependence of the spatially aver-
aged gain at different wave numbers as a function of the
structure period for a fixed fractional thickness of the doped
layers (0.1d). The optimum period is found to be in the range
of 300—500 nm, depending on the generated optical transi-
tion wave number. The calculated gain for bulk p-Ge with
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FIG. 5. Spatial-spectral gain distribution across two structure periods with
N,=8X10" cm™ for low applied fields (E=1.5kV/cm and B=1.15T).
Simulation temperatures are indicated.

the same applied fields and concentration is also presented
for comparison. The gain for the structure tends toward the
bulk values as the period goes to zero.

Figure 9 shows the dependence of the gain spectrum on
the electric field at a fixed magnetic field. The optimal field
ratio is found to be about 1.5 kV/(cm T) at B=1.5 T, which
is very close to the optimal field ratio in the bulk p-Ge laser.”
Note also the shift of the peak toward a higher wave number
as the electric field is increased, which occurs also in bulk
p-Ge lasers.

GROWTH FEASIBILITY

For initial experimental feasibility study, Ge:B delta-
doped structures were grown by chemical-vapor deposition
(CVD). The CVD method is based on hydride epitaxy, in
which Ge layers are formed by the pyrolysis of germane
(GeH,) gas on heated substrates. The setup for gas hydride
epitaxy of pure and doped Ge layers was developed at the
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FIG. 6. Spatial-spectral gain distribution across two structure periods with
N,=8X10" cm™ for high applied fields (E=2.5kV/cm and B=2T).
Simulation temperatures are indicated.

Physico-Technical Research Institute at Nizhny Novgorod
State University. It features a water-cooled horizontal-type
reactor with a straight-channel carbon heater. A mixture of
hydrides and hydrogen is fed into one side of the reactor and
exhaust gases are removed from the other side. The substrate
temperature is controlled by an electro-optical transformer
for a temperature range of 500-850 °C. Automatic regula-
tion of gas flow by personal computer (PC)-controlled elec-
tromagnetic valves allows the growth of multilayer structures
with complex concentration profiles. For the layer
thickness measurements, a microanalytical balance with a
0.01-0.1-mg accuracy is used, which gives thickness accu-
racy of 2—20 nm for 35-mm substrates. Germane, like all
other hydrides, is a gas, which at normal conditions is far
from saturation. The secondary product of thermal depletion
is H,, which is the same as the carrier gas used. The germane
used is highly purified, such that the crystals grown from it
should have a concentration of electronically active impuri-
ties below 10'* cm™. For boron acceptor doping, another
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FIG. 7. Spatially averaged calculated THz gain spectra (open symbols) with
N,=8X10"cm™ for low (E=1.5kV/cm and B=1.15T) and high (E
=2.5 kV/cm and B=2 T) applied fields at two different lattice temperatures.
The experimental lattice absorption spectra (see Ref. 7) in Ge at T7=10 and
50 K are plotted as solid symbols.

hydride B,Hg is used. Relatively low growth temperatures in
the range of 600—750 °C prevent significant diffusion of the
doping concentration profiles. The growth speed of
0.5 um/min is very high compared with ~1 um/h for
MBE.

Several selectively doped Ge:B test structures of differ-
ent thicknesses (11-32 um) have been grown, although the
peak concentration of these initial test structures was higher
than the optimal value required for gain. Figure 10 shows the
secondary-ion-mass spectrometer (SIMS) data taken from
one of the test structures, which consist of 35 periods with a
total thickness of 14 um. The linear SIMS spectrum in Fig.
11 shows more clearly the achieved doping profile. Diffusion
of acceptors from doped layers during CVD growth is ob-
served to be insignificant.

According to our calculations, the pure Ge regions re-
quire an ionized-impurity concentration below 3-5
X 10"3 cm™3, since the amplification cross section starts to
decrease at higher concentrations due to ionized-impurity
scattering.9 That this is achievable by CVD was verified by
electron-beam-induced current (EBIC) measurements,”*
which determine the minority-carrier diffusion length, a
function of impurity concentration. The diffusion length for
an undoped CVD Ge sample was compared with a calibra-
tion curve obtained using bulk Ge standards, and the net
impurity concentration was found to be about 103 cm™.
High-resolution transmission electron micrographs revealed

0.1 £ m

—=— 100 —0— 120
001Buk | —e— 140 —— 160] |

0 100 200 300 400 500 600
Structure period (nm)

FIG. 8. Spatially averaged gain vs structure period. The legend gives the
transition wave number for each curve in units of cm™'. E=2.25 kV/cm and
B=15T, T=10K, and N,,=5X 10" cm™,
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FIG. 9. Spatially averaged gain spectra for different electric fields at fixed
magnetic field for the structure with a period of 400 nm, N,=5
X 10" ¢cm™, T=10 K, and B=1.5 T. The legend gives the electric field
value for each curve in kV/cm.

no evidence of defects or dislocations at the interface be-
tween CVD Ge film and Ge substrate.>>"* Hence, the growth
test demonstrated feasibility of our setup to grow the consid-
ered delta-doped Ge structures to relatively high thicknesses
without negative effect on the crystal or structure quality.

DISCUSSION

At 10 K, the calculated small signal gain in the proposed
delta-doped thin-film p-Ge laser design was found to be
three to four times higher (Fig. 8) at the same applied fields
than that calculated for bulk p-Ge lasers at the same average
carrier concentration. However, the elimination of ionized-
impurity scattering and the reduction of heavy-hole scatter-
ing in the undoped accumulation regions allow considerable
increase in the average carrier concentration for the structure
over bulk, with a corresponding increase in the gain. Higher
gain permits smaller, planar active volume (which facilitates
cooling) and lower electric-field threshold (which lowers
Joule heating). This leads to a higher achievable duty cycle
and perhaps to continuous wave operation. Positive total gain
at 50-77 K will permit operation in a compact Stirling re-
frigerator or in liquid nitrogen.

The simplicity of the considered structure allows fast
growth by chemical-vapor deposition,26 which can achieve a
significantly thicker active region compared with a MBE-
grown QCL. In favor of increased thickness for homoepi-
taxial structures is the absence of heterointerfaces and stress
between layers. In support of these assertions we demon-
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FIG. 10. Semilogarithmic SIMS spectrum of boron for the first seven peri-
ods of a CVD-grown 35 period p-Ge/Ge structure. The intentional high
boron concentration on the surface is intended as a contact layer.
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FIG. 11. Linear SIMS spectrum of the first period of the structure to deter-
mine the impurity diffusion profile.

strated experimentally that CVD can produce thick
(>30 wm) multilayer delta-doped Ge structures with suffi-
ciently sharp doping profiles, sufficiently pure undoped re-
gions, and high crystal quality. This allows quasioptical elec-
trodynamic cavity design with remarkably reduced losses
compared with double-metal or plasma waveguides that have
been used for the comparatively thin QCL THz lasers.””
Small electrodynamic losses will allow the delta-doped
multilayer Ge laser to operate with THz gain levels of
0.4-0.5 cm™'. The absence of confinement quantization of
the energy spectrum will permit wide tunability over the very
broad spectral range of 60—140 cm™' (Fig. 7).
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