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ABSTRACT 

Plasmons can be generated in the two dimensional electron gas (2DEG) of grating-gated 

high electron mobility transistors (HEMTs).  The grating-gate serves dual purposes, namely to 

provide the required wavevector to compensate for the momentum mismatch between the free-

space radiation and 2D-plasmons, and to tune the 2DEG sheet charge density.  Since the plasmon 

frequency at a given wavevector depends on the sheet charge density, a gate bias can shift the 

plasmon resonance.  In some cases, plasmon generation results in a resonant change in channel 

conductance which allows a properly designed grating-gated HEMT to be used as a voltage-

tunable resonant detector or filter. Such devices may find applications as chip-scale tunable 

detectors in airborne multispectral detection and target tracking. 

Reported here are investigations of InGaAs/InP-based HEMT devices for potential 

tunable resonant sub-THz and THz detectors.  The HEMTs were fabricated from a commercial 

double-quantum well HEMT wafer by depositing source, drain, and semi-transparent gate 

contacts using standard photolithography processes.  Devices were fabricated with metalized 

transmission gratings with multiple periods and duty cycles.  For sub-THz devices, grating 

period and duty cycle were chosen to be 9 μm and 22%, respectively; while they were chosen to 

be 0.5 μm and 80% for the THz device.  The gratings were fabricated on top of the gate region 

with dimensions of 250 μm × 195 μm. 

The resonant photoresponse of the larger grating-period HEMT was investigated in the 

sub-THz frequency range of around 100 GHz.  The free space radiation was generated by an 
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ultra-stable Backward Wave Oscillator (BWO) and utilized in either frequency modulation (FM), 

or amplitude modulation (AM) experiments.  The photoresponse was measured at 4K sample 

temperature as the voltage drop across a load resistor connected to the drain while constant 

source-drain voltages of different values, VSD, were applied.  The dependence of such 

optoelectrical effect to polarization of the incident light, and applied VSD is studied.  The results 

of AM and FM measurements are compared and found to be in agreement with the calculations 

of the 2D-plasmon absorption theory, however, a nonlinear behavior is observed in the amplitude 

and the line-shape of the photoresponse for AM experiments.  For detection application, the 

minimum noise-equivalent-power (NEP) of the detector was determined to be 235 and 113 

pW/Hz
1/2

 for FM and AM experiments, respectively.  The maximum responsivity of the detector 

was also estimated to be ~ 200 V/W for the two experiments.   

The far-IR transmission spectra of the device with nanometer scale period was measured 

at 4 K sample temperature for different applied gate voltages to investigate the excitation of 2D-

plasmon modes.  Such plasmon resonances were observed, but their gate bias dependence agreed 

poorly with expectations. 
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CHAPTER 1 INTRODUCTION 

1.1 Background and motivation 

The terahertz (THz) band is a frequency range of (0.3-10)×10
12

 Hz in electromagnetic 

waves spectrum and it occupies the regime between radio waves and Infrared light.  Many 

materials ranging from semiconductors to explosive and living tissues are either semitransparent 

to THz frequencies or have specific terahertz fingerprints due to their molecular rotational and 

vibrational transitions, lattice vibrations in solids, and intraband transitions in semiconductors 

[1].  Based on these interactions with the THz field, materials can be divided into three 

categories for THz applications, namely, metals and highly doped semiconductors that are highly 

reflective (due to their large real permittivity in THz), materials with water content and/or polar 

molecules like organic compounds and explosives that are highly absorptive or have absorption 

finger prints, and non-polar molecules such as paper, plastic, cloths, wood, wood products and 

ceramics that are transparent at THz frequencies.  These materials are usually opaque to visible 

light.  The THz transparency of some of the visibly opaque materials like fabrics and cloths, 

along with distinctive absorption features of explosive and organic compounds make THz a 

unique window for applications such as security screening, imaging and explosive detection [2-

11] as well as applications in optoelectronic subsystems, airborne multispectral detection, and 

target tracking.  Figure 1 presents a diagram of the electromagnetic wave spectrum.  The 

terahertz region is marked with some of its applications in the figure. 



2 

 

Figure 1: EM-waves spectrum with the terahertz region marked with some of its applications.  

Credit: The Southeastern Universities Research Association (SURA) 

 

Despite considerable applications, however, technology at these frequencies remains 

limited, partly due to the lack of reliable sources and detectors, the so-called “THz Gap”.  This is 

historically due to hard fabrication processes and small feature sizes in components suitable for 

THz applications.  Recent years, however, has witnessed an extensive research efforts to fill the 

THz Gap which has resulted in the fast growth of newly emerging THz sources such as 

Backward Wave Oscillators [12], optically pumped gas lasers [13], and THz quantum cascade 

lasers (QCLs) [14-22].  The search for a reliable THz detector, however, hasn’t been that 

successful.  Commercially available detectors are mainly non-tunable and broadband [23-28].  

These detectors are based on number of different technologies, namely, bolometric components 
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[27-29], Schottky diodes [23], pyroelectric materials [24, 30], and Golay Cell [31, 32].  Each of 

these technologies experiences a certain drawback.  Bolometers offer very high sensitivities but 

they require cryogenic temperatures of < 4 K to remove the background heat.  This makes them 

expensive and not always available. They also have slow sampling rates to allow for the heat 

dissipation process.  Schottky diode-based detectors are not tolerable to high power sources such 

as gas lasers.  Pyroelectric-based detectors and Golay Cell also require a relaxation time to allow 

them dissipate the heat generated by the incident THz radiation.  Table 1 compares the THz 

detection characteristics of the abovementioned devices. 

Table 1: THz broadband detectors 

Detector 

(Manufacturer) 

NEP 

(W/Hz
0.5

) 

Responsivity 

(V/W) 

Sampling 

rate 

Operating 

Temperature 

Operating 

frequency (THz) 

Schottky diode 

(Virginia 

Diodes)  

1×10
-10 

< 4000 1 GHz Room Temp. 0.1 – 1.7 

QMCI 

Pyroelectic 

detector 

4.4×10
-10

 1.83×10
5
 10 Hz Room Temp. < 20 

Gentec-EO 

Pyroelectric 
2×10

-10
 4×10

5
 5 Hz Room Temp. 0.1 - 30 

Golay Cell 

(Microtec) 
10

-8
 < 5000 70 Hz Room Temp. 0.02 - 20 

Golay Cell 

(Tydex) 
1.4×10

-10
 1×10

5
 20 Hz Room Temp. 0.15 - 20 

QMCI Hot 

Electron 

Bolometer 

7.5×10
-13

 3500 1 MHz 4.2 K 0.06 – 0.5 
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Detector 

(Manufacturer) 

NEP 

(W/Hz
0.5

) 

Responsivity 

(V/W) 

Sampling 

rate 

Operating 

Temperature 

Operating 

frequency (THz) 

QMCI 

Germanium 

Bolometer 

2×10
-12

 1×10
4
 < 1 KHz 8 K 0.1 - 20 

IR-Labs Hot 

Electron 

Bolometer 

8×10
-13

 ------ 600 KHz 4.2 K 0.06 - 1.5 

IR-Labs Si 

Bolometer 
1.2×10

-13
 2.4×10

5
 200 Hz 4.2 K 0.15 - 20 

 

Commercially available detectors, suffer from the lack of tunable THz detectors with resonantly 

enhanced responsivity and NEP in a narrowband frequency range.  Extensive research efforts are 

spent in studies of such devices based on two-dimensional electron systems, such as metal-oxide-

semiconductor field-effect transistors (MOSFETs) [33-34], HEMTs [35-55], and Graphene [56-

57].  These devices can be promising candidates to fill this gap due to their possible room 

temperatures operation in devices with high mobility values ( > 10
3
 cm

2
/Vs), and their sensitive 

response with NEP values of ~ 10
-11

 to 10
-12

 W/Hz
0.5

.
 

1.2 High Electron Mobility Transistors 

High electron mobility transistors (HEMTs) are electronic devices based on field effect 

transistors (FETs).  These devices are grown by molecular beam epitaxy (MBE) or metal-organic 

chemical vapor deposition (MOCVD) growth of two different wide and narrow bandgap 

semiconductor layers.  All layers are lattice matched to the substrate.  At the interface of the two 

layers with different bandgaps there forms a quantum well due to the conduction band offset 
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between the two.  An n-type thick or δ-doped layer based on the wide bandgap material is placed 

in the structure on top of the interface to provide the quantum well with the required doping.  

The dopants fall and get trapped into the interface due to the quantum well formation.  These 

dopants will occupy the ground level state of the potential well and their movement in the 

direction normal to the interface will be limited due to the quantum well’s quantized states.  

They are, however, free to move in the plane of the interface and are therefore called two 

dimensional electron gas or “2DEG”.  The doped layer is separated from the interface by a few 

nanometers thick undoped layer of the same type, called “Spacer”.  This will reduce the 

scattering of the charge carriers inside 2DEG by the extra leftover dopants in the doped layer and 

therefore increase device’s mobility significantly. 

1.3 HEMTs as plasmon based terahertz devices 

Figure 2 presents the diagram of a grating-gated HEMT structure.  The 2DEG layer with 

sheet charge density, ns, is located at the distance d below the surface.  Grating with period a, 

and openings t acts as the gate region with the incident x-polarized THz radiation propagating 

along the z-axis (with the x-axis being perpendicular to the grating bars).  When grating period is 

much smaller than the wavelength of the incident light (~λ/100), it will see the THz radiation as 

a DC electric field.  Grating bars will then become polarized and induce localized electric fields 

inside the semiconductor layers underneath.  These local fields have the same spatial periodicity 

as the grating bars and their direction screens the grating polarization which in turn follows the 

polarization direction of the incident light at each instant in time.  These local fields induce 
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oscillations with high damping rates in the charge carriers inside 2DEG.  At the resonant 

frequency of the electron gas, however, they couple to the 2DEG and excite resonant collective 

oscillations or “2D-plasmons”; in analogy with a classical mass-spring system with an external 

force.  The grating period, therefore, defines the wavevector of the excited plasmons.  The 

resonant plasmon frequencies are determined from this wavevector and the 2D-plasmons 

dispersion relation.  The dispersion relation depends on the 2DEG sheet charge density, which in 

turn depends linearly on the external gate-voltage [58-59].  This provides a means to not only 

excite plasmon modes but also to actively tune the absorption resonances. 

 

Figure 2: Sketched diagram of the grating-gated HEMT structure with the incident x-polarized free space radiation 

 

Plasmon based HEMTs have potential as fast, chip-scale THz devices and specifically 

frequency-tunable resonant detectors.  The tunable resonant absorption of plasmons in the 2DEG 

of grating-gated MOSFETs and HEMTs has been reported for a number of material systems 

which include Si-inversion layers [33-34], GaAs [35-45], GaN- [46-47], InGaAs/InP-[48-54], 

InGaP-based HEMTs [55], and Graphene [56-57].  This conversion of THz radiation to 
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plasmons confined on subwavelength structures (~λ/100) may aid in bridging the gap between 

microwave electronics and infrared photonics
1
. 

Historically, GaAs-based HEMTs have received particular attention for tunable THz 

resonant detection [36-41], THz near-field enhancement [45], and THz mixers [43-44].  For 

detector application, the coupling structures have progressed from simple lamellar gratings [36-

38] to split gratings [39], nano log periodic antennas, and hybrid antenna-grating structures [35, 

40-42] in this material system to increase responsivity and reduce the noise-equivalent-power 

(NEP) of the detector. 

1.4 InGaAs/InP based HEMTs and their advantage 

InP based HEMTs are typically lattice matched molecular beam epitaxially grown 

InAlAs/InGaAs heterostructures on InP substrate.  The quantum well forms at the interface of 

the InAlAs and InGaAs layers with the conduction band discontinuity (ΔEc) of ~ 0.51 eV.  

Figure 3 presents the schematics of the conduction band and Fermi energy level in a double 

quantum well InGaAs/InP-based HEMT.  The two 2DEG layers from in the two interfaces of 

InAlAs with InGaAs where the conduction band goes below the Fermi level due to the observed 

ΔEc. 
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Figure 3: Schematics of the formation of the quantum well at the interface of two InAlAs and InGaAs layers with 

different bandgaps. 

 

InGaAs/InP materials system [48-49], merits attention due to potentially ~1 to 2 order of 

magnitude higher sheet charge density and lower electron effective mass when compared with 

GaAs-based systems. These features would result in stronger plasmon absorption at higher THz 

frequencies which potentially pushes the above mentioned applications to the higher frequencies 

of few THz.  Furthermore, lattice matched growth of InGaAs/InAlAs heterostructures on InP 

substrates enables integration with other established InP-based photonics and fast optoelectronic 

integrated circuits.  Although some works report on the electrical effects associated with plasmon 

modes in 2DEG based transistors [34, 36-41, 48, 51-55], others focus on device absorption 

properties [33, 46, 49, and 50] where theory adequately describes the spectrum [60-67].  No 

theory, however, has yet been presented to explain how 2D-plasmons couple to the electrical 

transport properties of the HEMT. 
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CHAPTER 2 THEORETICAL CONSIDERATION 

2.1 Two dimensional plasmons dispersion 

The plasmon wavefunction is proportional to exp[i(kx-ωt)], where the x axis is the line 

between source and drain contacts and the wavevector k = k’ + i k” is complex.  The real part k’ 

is the propagation constant, which takes positive or negative values for right (+x) and left (-x) 

propagating plasmons, respectively.   The imaginary part k” is the attenuation constant.  Due to 

the periodic grating coupler, incident radiation can excite plasmons having only a discrete set of 

possible k’ values, namely kn’ = 2πn/a, where n is an integer of either sign.  The dispersion 

relation (in SI units) for 2D-plasmons under zero Source-Drain bias is [65], 

  
  

   
   

 

    
[         (  

  )]   ( 1 ) 

where ωn = 2πfn and fn is the frequency of the n
th

 integer order plasmon, e the electron charge, m
*
 

the effective mass, d the 2DEG depth from the grating, ns the 2DEG sheet charge density, and εt 

(εb) the relative permittivity of the semiconductor layers above (beneath) the 2DEG, respectively. 

If the grating-gate is close enough to the 2DEG layer (kn’d << 1), one obtains Coth[kn’d] 

~ 1/kn’d and the dispersion relation reduces to 

   √
     

      
  
  ( 2 ) 

In an unbiased device (VSD ~ 0 V) the left and right propagating plasmons are degenerate 

and their superposition forms 2D-plasmon standing waves.  A finite applied VSD causes electron 
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drift with velocity v0 and lifts the degeneracy.  Then the dispersion for the two different plasmon 

modes in the applicable limit kn’d << 1 can be written as [67] [APPENDIX A], 

     
 (

   
 

     ) √ 

 (      
 )

 ( 3 ) 

   
  
 

  
        ( 4 ) 

where τ is the relaxation time, and A = nse
2
/4εtε0m

*
.  In an unbiased device with v0 ≈ 0 m/s, Eqs. 

3 and 4 reduce to Eq. 2 for a gating-gate coupler with Re[k] = kn’. 

For calculations of the plasmon dispersions, the value of ns is estimated to be [59] 

   
    

  
(      ) ( 5 ) 

Where Vg and Vth are gate bias and the measured channel depletion threshold voltage, 

respectively [46].  We determined Vth from I-V curves [48]
 
to be -0.85 V ±10% depending on the 

device and measurement temperature. 

Figure 4 presents the calculated dispersion curves from Eqs. 3 and 4 for our sub-THz 

device with Vg = 0 V, using a, ns, and τ, values of 9 μm, 1.51×10
12

 cm
-2

, and 0.25 ps, 

respectively.  Dispersion curves of the unbiased and biased device are shown with black solid 

and red dashed lines, respectively.  For the biased (VSD ≠ 0 V) device, v0 was taken to have the 

value 1×10
5
 m/s, and we observe that degeneracy in the dispersion curve is split by 25 GHz at 

the 207 GHz position of the fundamental, which is indicated by a symbol and an arrow.  A 
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“right” moving plasmon is defined as one propagating in the direction from source to drain.  This 

drift velocity is within the range of the reported saturated values [68-69] [APPENDIX B]. 

 

Figure 4 : Calculated dispersion curves of the biased and unbiased device with dashed and solid curves respectively. 

 

Frequency of the fundamental f1 for sub-THz device (Eqs. 3 and 4) is plotted as a 

function of sheet charge density, ns, in figure 5.  Corresponding values of Vg are given on the 

upper horizontal axis, and a vertical arrow gives the position of the fundamental at zero gate bias.  

Symbols on the VSD = 0 V curve indicate the position of the fundamental for the values of Vg 

used in our calculations (Vg is a quasi-continuous variable in our experiment ranging in value 

from –0.50 to +0.85 V) and the arrow indicates the fundamental harmonic for zero gate bias.  

The meaning of the solid and dashed curves is the same as in Fig. 4.  When a Source-Drain bias 

is applied, the two left and right moving plasmons show two different frequencies of 195 and 
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220 GHz at Vg = 0 V, respectively, a frequency difference of 25 GHz.  This ~ 13% difference is 

fairly constant over the range of Vg values in the experiment [APPENDIX B]. 

 

Figure 5: Calculated frequency of 1st-order plasmon of the biased and unbiased device as a function of ns (Vg) (red 

dashed and black solid curves, respectively). 

2.2 Analysis of transmission spectrum 

The transmission spectrum of the plasmon based HEMT can be calculated following the 

theory of 2D grating couplers [66, 70].  Such spectrum depends on different device parameters 

such as electron effective mass, m*, 2DEG depth from the grating, d, grating period and duty 

cycle, a and t/a, Sheet Charge density, ns, and 2DEG relaxation time, τ.  The analysis of such 

dependences will help to choose appropriate material system, and to design the appropriate 

HEMT structure for the frequency range of interest.  Moreover, the following analysis will 

provide us with better understanding of the device behavior when its photoresponse is measured. 
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Figure 6 presents the effect of different 2DEG depths of 38 and 76 nm.  The spectra is 

calculated for an imaginary InGaAs/InP-based device (m* = 0.043) with ns, τ, a, t/a values of 

1.51×10
12

 cm
-2

, 0.25 ps, 0.5 μm, and 0.3 respectively All lines shift to lower frequencies with 

decreasing depth, which is understood intuitively as being due to the interaction of the plasmon 

fields with the gate electrons, and therefore increasing the mass involved in the plasma 

oscillation, in analogy with classical mass-spring system.  The stronger interaction with the THz 

grating polarization also makes the lines deeper, which is a desirable effect [APPENDIX C]. 

 

Figure 6: Calculated Plasmon spectrum for a device with two different 2DEG depths as labeled in the graph. 

A different electron effective mass is one of the main effects of choosing different material 

systems.  Figure 7 presents the calculated transmission spectra of a device with parameters used 

in Fig. 6 with 2DEG depth fixed at 38 nm.  Two different values of 0.08 and 0.043 are used for 

effective mass.   These values correspond to GaAs- and InGaAs/InP-based material systems, 

respectively.  Plasmon frequencies redshift and absorption deeps become shallower with 

increasing electron effective mass.  These can be explained by using the mass-spring system 
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analogy: higher electron effective mas will result in increasing the total mass involved in the 

plasma oscillation which redshifts the oscillation frequency.  On the other hand, higher effective 

mass will increase the inertia involved in oscillations which makes it harder to excite plasmons.  

This can result in having a shallower absorption feature in the transmission spectrum. 

 

Figure 7: Calculated Plasmon spectrum for a device with two different electron effective masses as labeled in the graph. 

 

Figure 8 presents the results of varying t/a, for in InGaAs/InP-based device.  Parameters 

used are same as the ones in Fig. 6 but with different grating duty cycles, t/a.  Smaller t/a results 

in lower total transmittance but stronger coupling to plasmons, as evidenced by deeper 

absorption lines in comparison to the baseline.  The lower total transmission is due to the smaller 

grating openings and increase in reflection by grating metal.  Expansion of the curves vertically 

reveals another feature already reported [71], namely, that the second-order mode disappears 

when t/a = 0.5.  Note that the position of the resonances is independent of t/a. 
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Figure 8: Effect of varying grating gap-to-period ratio t/a.  The t/a values are given above each curve. 

The extremes of the t/a range are indicated next to their corresponding curve, with each neighboring curve differing by t/a steps 

of 0.1. 

 

Next, t/a value is fixed at 0.3 and grating period, a, is increased from 0.5 to 10 µm with 

rest of the parameters remaining the same.  Calculated transmission spectra are plotted in figure 

9.  As a increases, the resonances shift to lower wavenumber, the separation between first and 

second resonance decreases until they merge at a ~ 4 µm.  The lines become deeper, indicating 

stronger coupling to the plasmons.  The redshift in frequencies can be explained by the grating 

wavevector of 2πn/a.  As grating period is increased, the momentum component added to the 

free space radiation by the corrugated structure is decreased as 1/a which results in the coupling 

to lower energy plasmons.  The factor ωτ = 2πfτ defines the resolving factor of different plasmon 

modes for a specific device.  For frequencies where f > 1/2πτ (with f = 0.6 THz in the calculated 

device) period of the plasmon oscillations is shorter than the scattering lifetime and therefore 
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different modes will be resolved.  In a frequency regime where f < 1/2πτ, however, scattering 

effects dominate the plasmon oscillations.  This results in broadening of resonant features and 

merging of the different order plasmons. 

 

Figure 9: Effect of changing grating period with t/a = 0.3.  Values of a are given at the side of the corresponding peaks. 

 

Figure 10 presents the calculated transmission of the device for different relaxation time 

values.  In this figure, device parameters are assumed to be the same as in Fig. 9 but with grating 

period fixed at 9 μm and relaxation time changed from 10 ps to 0.25 ps.  Data is plotted for 

narrower frequency range of up to 1.5 THz for better clarity.  For large relaxation times, spectra 

shows up to 7
th

-order plasmon mode, however, as relaxation time is decreased, different orders 

become shallower until they merge and broaden out at τ = 0.5 ps.  For τ < 0.5 ps spectra shows 

one broad resonance at 387 GHz.  This resonance is not the 1
st
-order harmonic and neither the 

2
nd

-order but its transmission minimum is closer to the 2
nd

-order mode.  This broad feature is a 

0 1 2 3 4 5 6

20

24

28

32

10 m

2 m

 

T
ra

n
s
m

is
s
io

n
 (

%
)

Frequency (THz)

0.5 m



17 

superposition of all the modes due to the small τ value, and its line-shape follows the baseline of 

the transmission spectra for devices with large relaxation times.  This behavior can be also 

attributed to the decrease in ωτ factor at smaller τ values. 

 

Figure 10: Calculated transmission spectra of an InGaAs/InP-based device with a = 9 μm, t/a = 0.3, and ns = 

1.51×10
12

 cm
-2

 but with different relaxation times as marked in the legend. 

 

Gate-bias is the means of tuning the plasmon resonances by controlling the sheet charge 

density of the 2DEG.  We explore the effect of gate bias on the calculated transmission spectrum 

in figure. 11.  The data is calculated for a device designed to have plasmon resonance at sub-THz 

frequencies by choosing its grating period, a, to be 9 μm.  Other device parameters were chosen 

to be the same. Sheet charge density, ns, was calculated for different Vg values from Eq. 5 with 

Vth = -0.85 V, d = 38 nm, and εt = εInAlAs = 12.24. Increasing the negative gate voltage decreases 

the sheet charge density, which shifts the band to lower wavenumbers while making it shallower 

as explained by depletion of charge carriers. 
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Figure 11: Calculated transmission spectra as a function of gate voltage for a device with a = 10 µm, t/a = 0.3.  The extremes of 

the Vg range are indicated next to their corresponding curve, with each neighboring curve differing by Vg steps of 0.2 V. 

2.3 Theoretical considerations for frequency modulation (FM) experiments 

During the FM experiments the frequency of the sub-THz source is modulated with 

amplitude Δf.  Source-Drain current ISD is recorded using a lock-in amplifier synchronized with 

the sub-THz frequency modulation Δf.  The lock-in input is the voltage drop VL across the load 

RL and is given by [49, 51-52] 
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Since the high-impedance lock-in input draws approximately no current, Eq. 2 may be expressed 

in terms of ISD as 
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The change dISD may be written as d(BWA), where B is a coupling factor between 

plasmonic absorption and the change in channel conductance, W is the effective radiation power 

transferred to the 2DEG at each frequency, and A is absorbance of the device.  This will give 

    (    )  
 

 
[
(    )

  
]      ( 8 ) 

We assume B to be frequency and gate-bias independent. The microwave power inside 

the waveguide is independent of frequency due to power leveling, but once it leaves the 

waveguide and is incident on the sample, the value of W may vary strongly with wavelength due 

to interference effects.  However, it is assumed that W is constant over the small f utilized so 

that there will be no artifacts due to amplitude modulation.  The lock-in output is then  

    (    )  
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)     ( 9 ) 

 Assuming constant front surface reflectance R, we obtain absorbance as A = 1-R-T and 

therefore dA/df = - dT/df.  Figure 12 presents dT/df from the transmittance spectra calculated in 

Fig. 11.  Calculated spectra are shown for the frequencies up to 120 GHz.  A record of lock-in 

output for different gate voltages produces a set of points corresponding to a vertical slice 

through the calculated curves in Fig. 12.  By choosing different center frequencies, we are able to 

reproduce the complete curves shown in Fig. 12 over the frequency range accessible to our 

radiation sources.  Those ranges are indicated in the figure with two bars. 
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Figure 12: Calculated dT/df spectra of a device with a = 9 µm, and t/a=0.3. The extremes of the Vg range are indicated next to 

their corresponding curve, with each curve differing from its neighbors by 0.2 V.  Horizontal bars indicate our range sources. 
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CHAPTER 3 EXPERIMENT 

3.1 Fabrication of the HEMTs 

The devices were fabricated from a molecular-beam-epitaxial grown, InGaAs/InP HEMT 

heterostructure with two δ-doped layers (Table 1).  This will assist in the formation of two 

quantum wells at the two interfaces In0.68Ga0.32As channel with In0.52Al0.48As as shown in Fig. 3.  

The δ-doping, instead of a thick doped layer, was chosen to avoid formation of the parasitic or 

“virtual” gate [70, 72-73].  The detailed layer structure of the MBE grown heterostructure is 

presented in table 2.  Using this device structure, the doping level of different layers is calculated 

by Silvaco Atlas finite element method simulation software.  Such calculations are overlapped 

with device structure and presented in figure 13.  The two 2DEG layers are marked with the two 

arrows.  These two layers of highly concentrated 2D electrons are ~20 nm apart and have 5-6 

orders of magnitude higher charge densities when compared with their neighboring layers. 

Table 2: MBE grown epilayer structure used for fabrication of the HEMT 

75 Å n
+
-In0.6Ga0.4As 6.0×10

18
 cm

-3
 Cap Layer 

350 Å In0.52Al0.48As Undoped  

Si δ-doping layer 4×10
12

 cm
-2

 

30 Å In0.52Al0.48As Undoped Spacer 

200 Å In0.68Ga0.32As Channel 

30 Å In0.52Al0.48As Undoped Spacer 

Si δ-doping layer 4×10
12

 cm
-2

 

3000 Å In0.52Al0.48As Buffer 

InP Substrate 
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Figure 13: The epitaxially-grown materials are indicated as A = In0.48Al0.52As with δ-doping at the interface with B, 

B = undoped In0.48Al0.52As spacer, C = In0.32Ga0.68As channel and E = In0.48Al0.52As buffer layer.  Radiation is 

incident on the grating-gate from the left.  The black curve indicates the charge density distribution. 

 

Device fabrication first involved etching of the active layers into mesas for electrical 

isolation.  This was followed by the patterning and deposition of electron-beam evaporated 

Ti/Au (500nm/2500nm) metal pads, subsequently rapid thermal annealed to form ohmic source 

and drain contacts.  Gates were formed by first removing the doped-InGaAs cap layer that 

facilitated source and drain ohmic contact formation.  A 20 nm layer of Ti was then deposited on 

the 195 µm × 250 µm gate region to act as a semitransparent gate metal to allow uniform gate-

bias control of the 2DEG sheet charge concentration.  The gratings, with periods a = 0.5 and 9 

µm were patterned over the semi-transparent gate by optical and e-beam lithography, 

respectively.  The duty cycles were chosen to be 0.22 and 0.8 for large and small period gratings.  

The grating bars were formed by depositing e-beam evaporation of stacks of Ti/Au (15 nm/100 
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nm).  This would position the top 2DEG layer at 38 nm beneath the gate gratings, having d = 38 

nm.  Source, gate, and drain bond pads were fabricated by photolithography using Ti/Au (50 

nm/250 nm).  The sub-THz sample was mounted in a TO-5 transistor package with cap removed.  

The THz sample was mounted on a modified TO-5 housing to have a hole aligned with the gate 

region of the transistor so that there can be no transmission of THz light except through the gate 

region.  An optical microscope image of the sub-THz device is presented in figure 14 while THz- 

device with smaller grating period is shown in figure 15. 

 

Figure 14: Optical microscope image of our sub-THz grating gated InP-based HEMT. 

 

 

Figure 15: Optical microscope image of our THz HEMT. 
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3.2 Electrical characterization of the HEMTs 

The I-V characteristic of the HEMT device was measured at different sample 

temperatures to determine the sheet charge density and relaxation time values.  For the I-V 

measurements Drain of the device was grounded while Source and Gate were biased relative to 

the ground.  I-V curves were measured for different Vg values with Vg step size of 0.1 V.  

Applied Source-Drain voltage, VSD, was swept from 0 to 2.5 V for each of the Gate voltages and 

the Source-Drain current, ISD was recorded.  All the biasing was done with two Keithley 2400 

Source meter units. 

3.3 Experimental setups for characterization of the sub-THz device 

3.3.1 Backward wave oscillators 

Backward wave oscillator (BWO) is a radiation source designed to convert the energy of 

an electron beam to Sub-THz and THz range electromagnetic (EM) waves.  They can provide 

radiation powers up to 100 milliwatts (mW) and frequencies from 1 GHz to 1.5 THz with 

different vacuum tubes.  These sources provide a huge tunability range that can give benefits 

over conventional single line sources.  A BWO consists of a vacuum tube with an electron gun 

and a slow-wave structure.  Slow wave structure is a circuit where the phase velocity of the 

electromagnetic wave is much smaller than the speed of light.  For instance, it can be a helix 

where the speed reduction factor is the ratio of the pitch of the helix to its circumference.  In such 

a circuit, electromagnetic waves can be matched to a slower moving electron beam to form 
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oscillating electron bunches as similar to travelling-wave tubes that are used to amplify RF 

signals. 

In a BWO, a linearly moving electron beam, generated by an electron gun, is accelerated 

to the collector at the other side of the tube.  The beam is radially confined by a magnetic field 

around the vacuum tube.  Propagating along the axis of the cylindrical tube, electron beam 

passes through a resonant cavity containing a slow-wave circuit.  Such a cavity provides a set of 

electromagnetic modes that propagate along and in the opposite direction to the electron beam 

with a phase velocity matching the speed of electrons.  These propagating slow modes interact 

with the negatively energetic electron beam and cause oscillating electron bunches that radiate 

electromagnetic (EM) waves in GHz and THz frequencies [74].  Generated EM-wave out-

couples to the output of the tube using a directional coupler close to the cathode of the electron 

gun.  The backward wave oscillators are so named due to the negative group velocity of the 

cavity modes involved in the interaction and therefore their energy transfer is backwards along 

the electron beam.  This can also be explained by the opposite direction of cavity modes 

Poynting vector relative to the velocity vector of the electron beam [74]. 

The operating frequency of a BWO can be tuned by changing the cathode voltage of the 

electron gun.  An increase in the cathode voltage increases the speed of the propagating electrons 

and therefore decreases the transit time of the electrons through the cavity and, consequently, 

shortens the period (increase the frequency) of the generated oscillations. 
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The BWO used in this work had two operating frequency ranges of 40-60 GHz and 75-

110 GHz.  The BWO power supply had a feedback loop serving as a power leveling circuit by 

using the output of a crystal detector that was monitoring the radiation as the feedback input. 

3.3.2 Cryogenic temperatures and closed cycle Helium cryostat 

The HEMT device was fixed to the cold copper plate of a Janis SHI-4 closed cycle 

cryostat.  The closed cycle cooler was able to reach temperatures as low as 4 K in 45 minutes. At 

the end of the vacuum jacket was installed a polyethylene (PE) vacuum window, which allows 

Sub-THz radiation to pass into the cryostat and irradiate the device. 

To control the temperature of the sample, a silicon diode temperature sensor was 

thermally contacted to the copper below the device and connected to a Lakeshore Cryotronics 

Inc. 331S temperature controller.  The temperature controller applied current to a 50 ohm heater 

wire glued around the second stage of the cryostat. The heater was formed by wrapping 50 ft of 

Nichrome heating wire around the cylindrical second stage.  This wire has a layer of polyimide 

insulation around it which allows it to tolerate local temperatures as high as 500 K.  The heating 

power was up to 50 W. This wire was fixed to the copper body with a layer of VGE-7031 

varnish which can tolerate temperatures up to 470 K for up to 2 hours.  Figure 16 presents a 

photo of the device mounted inside the cryostat.  The three Source, Drain, and Gate contacts of 

the device are visible.  Locations of the HEMT device and the Si diode are marked with the red 

arrows and labeled accordingly. 
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Figure 16: A photo of the HEMT device mounted inside the Janis SHI-4 cryostat 

3.3.3 Frequency modulation setup for photoresponse measurement 

Figure 17 presents a schematic of the FM experiment.  A 100 Hz sine wave with 

adjustable DC offset was used to modulate the BWO frequency around a central value set by the 

offset.  Moreover, adjusting the DC offset enabled us to sweep the applied Cathode voltage and 

consequently the output frequency of the BWO.  The modulation amplitude was 100 MHz, or ~ 

0.1% of the central frequency. The same control signal was high-pass filtered and amplified for 

the lock-in reference.  A crystal detector connected via a 10 dB directional coupler monitored the 

sub-THz power, and this signal was used for power leveling the BWO. 
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Figure 17: Schematic of the frequency modulation experimental setup 

 

The radiations from the BWO were covering two frequency ranges of 40-60 GHz and 83-108 

GHz by adjusting the DC offset of deriving sine wave in the ranges of 0.5-3.7 V and 1.17-3.4 V, 

respectively.  Sub-THz waves were then conducted to the cryostat with rectangular waveguides 

and a polarization-preserving horn.  The radiation power was kept constant over each of the 

ranges by the power leveling circuit.  Separate sets of WR-19 and WR-10 waveguide 

components were used for these two frequency ranges, respectively.  These waveguide sets differ 

from each other in size and are specifically designed to have the maximum coupling to the sub-

THz waves of each frequency range.  After exiting the gain horn, the radiation passed through a 

PE window into the vacuum of the cryostat to irradiate the device.  The BWO head could be 

rotated about the optical axis to study polarization effects.  During measurements, a constant 0.5 

V was applied to the source while the gate was biased at 0, -0.1 and -0.2 V, all with respect to 

ground, with the drain connected to ground via a 100 Ω load.  Figure 18 presents a photo of the 

setup in FM experiments. 
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Figure 18 : Top view image of the FM measurements setup. 

3.3.4 Polarization Check experiments 

 An experimental setup was designed to test the effect of scattering of sub-THz radiation 

from Polyethylene cryostat window and reflection from different metal surfaces on radiation 

polarization.  The setup was consisted of two gain horns placed in front of each other that are 

referred to as the emitting and collecting horns, respectively.  The emitted sub-THz radiation 

generated by the BWO exits the emitting horn and propagates through free space before being 

collected by the collecting horn for detection by a crystal detector.  The emitting horn was fixed 

throughout the experiment with a vertical polarization axis.  The collecting horn was rotatable 

about the optical axis so that its polarization axis could be either horizontal or vertical.  When 

two horns have matching polarization axes; the radiation will be collected by the collecting horn 

and detected by the crystal detector.  This was confirmed by placing a wiregrid polarizer in the 

beam path.  If their polarization axes are perpendicular to each other, however, the polarization 
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of the emitted beam won’t match that of the collecting horn and therefore no radiation will be 

detected at the crystal detector unless scattering off or reflection from an object in the beam path 

changes the polarization of the incoming light. Figures 19 and 20 present pictures of the 

experimental setup when polarization axes of the two horns are parallel and perpendicular, 

respectively. 

 

Figure 19: Image of the experimental setup with polarization axes of two horns parallel. 

 

Figure 20: Image of the experimental setup with polarization axes of two horns perpendicular. 
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3.3.5 Amplitude modulation setup for photoresponse measurement 

In AM experiment, the device was mounted in the Janis closed cycle cryostat at.  

Radiation generated by a backward wave oscillator (BWO) at 77 or 106 GHz was guided into the 

cryostat via a rectangular waveguide vacuum-sealed at a standard waveguide junction by a 

rubber o-ring with a 3-m-thick sheet of mylar.  This reduced standing wave interferences and 

polarization scrambling in comparison to other measurements with frequency modulation by 

having the output of the polarization-preserving horn separated from the device by just 7 mm 

with no intervening window.  Figure 21 presents a top-view image of the experimental setup.  

The waveguide structure coupled to the cryostat through is visible.  The red arrow points to the 

o-ring sealed waveguide port and the location of the Mylar sheet. 

 

Figure 21: Top view image of the AM measurements setup. 

 

The incident radiation, electronically amplitude modulated at 512 Hz, was monitored by a 

crystal detector via a 10 dB directional coupler (Fig. 21).  The detector signal was high-pass 
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filtered and amplified to serve as the lock-in reference.  Constant voltages of 0, 0.25, or 0.5 V 

were applied to the source while the drain was connected to ground via a 100 Ω load.  The 

voltage on the grating-gate (Vg) was stepped from -0.5 to 0.8 V with respect to ground in 

increments of 10 mV.  The voltage across the load resistor was input to the lock-in for 

synchronous detection of the photoresponse.  A diagram of the experimental setup is presented in 

figure 22. 

 

Figure 22: Schematic of the amplitude modulation experimental setup. 

3.4 Experimental setups for characterization of the THz device 

3.4.1 Bomem DA8 FTIR setup for THz plasmonic transmission spectra 

Transmission spectra through the gate region of the device were measured at 4 K sample 

temperature using a Bomem DA8 Fourier spectrometer with a Globar source, 12 and 25 micron 

Mylar pellicle beamsplitters and a liquid-He cooled Si-bolometer.  In this case, the sample was 

mounted upside down on the light cone inside the bolometer using rubber cement, similar to the 
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experimental procedure outlined in [47]. In this configuration, pictured in figure 23, unpolarized 

far-IR light first passed through the substrate of the HEMT exiting through the grating-gate 

before being collected by the bolometer.  The plasmon-exciting local fields due to polarization of 

the grating bars induced by the incident THz field are still expected in this case.  During these 

measurements, a negative gate bias was applied to the gate with the source and drain grounded in 

order to observe any sheet charge dependent resonant effects. 

 

Figure 23: A picture of the InP HEMT device mounted with grating facing the bolometer collection cone for 4 K 

measurements using Bomem DA8 FTIR spectrometer. 

3.4.2 Bruker 80v FTIR spectrometer integrated with Hyperion 1000 IR microscope 

The THz device was mounted inside a Janis ST-500 continuous flow liquid-helium 

cryostat and was oriented so that unpolarized IR-radiation hit the grating before passing through 

the layered structure of HEMT.  Sample temperature was monitored by a Si diode temperature 

sensor and stabilized at 20 K with a Lake Shore Cryogenics 331 temperature controller.  The 

cryostat was fixed to an optical stage and placed in the beam path of the Bruker Hyperion 1000 

IR-microscope integrated with a Bruker 80v Fourier transform infrared (FTIR) spectrometer.  
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The Far-IR radiation of FTIR’s globar lamp entered the microscope through a side polyethylene 

window.  A 15x reflective condenser lens were used to focus the beam on the sample.  Focused 

beam would hit the grating, pass through the device, and then collected and collimated by a 15x 

reflective objective on top of the cryostat.  The transmitted beam was then detected using a 

helium-cooled Si-bolometer interfaced with the system.  The entire microscope setup was purged 

by dry N2 to reduce atmospheric absorption lines in THz region.  During the measurements 

Source and Drain of transistor were grounded while Gate was biased in range of Vg = -0.2 V to 

0.2 V with the voltage step size of 0.1 V to tune the possible plasmon absorption lines.  Figure 24 

presents a picture of the device mounted inside the cryostat while the complete experimental 

setup is shown in figure 25. 

 

Figure 24:A picture of the HEMT device mounted inside the cryostat and oriented so that IR-radiation was passing 

through the grating first. 
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Figure 25: A picture of the experimental setup with FTIR spectrometer on left, IR-microscope with the interfaced 

Si-bolometer at center and cryostat mounted on a stage and placed in the beam path. 
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CHAPTER 4 RESULTS AND DISCUSSION 

4.1 Sub-THz HEMT Device 

4.1.1 Results of frequency modulation experiment 

Source-Drain I-V curves of the HEMT were measured for different of gate-biases and 

two different sample temperatures of 295 K and 4 K in order to determine ns and  of the device.  

Data was taken for Vg between 0 to -0.5 V with steps size of -0.1 V and are presented in figure 

26.  Source-Drain current, ISD, saturates to different levels which decrease with increasing 

negative gate bias until the HEMT reaches pinch off.  Measured ISD saturates at higher values for 

each gate voltage when sample is at 4 K.  This can be attributed to the reduced scattering and 

therefore higher mobility when sample is cooled. 

The saturation current, Isd,sat, data are plotted in figure 27 as a function of gate voltage.  In 

this figure, data for 295 K and 4 K sample temperatures are plotted with black and red colored 

symbols, respectively.  The black and red curves are fits of formulas from [59] to the data.  The 

fit parameters, namely initial doping of the δ-doped layers and mobility, allow determination of 

relaxation time and sheet charge densities at each applied Vg. 
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Figure 26: Measured I-V Curves of the device at T = 295 K and 4 K 

 

 

Figure 27: Isd-sat vs Vg data (symbols) and fits (lines)  for the two measurement temperatures of 295 K and 4 K 

 

 Table 3 presents the values of μ, τ, nd, and ns at Vg = 0 V at the two temperatures.  

Relaxation time, τ, is calculated from the fitted mobility by τ = m
*
μ/e and ns is calculated from 

Eq. 5 with nd related to the Threshold voltage by Vth =ϕb – Ec - endd/εtε0.  Mobility and therefore 

relaxation time of the transistor increases with decreasing temperature as expected.  Moreover 
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the sheet charge density of 2DEG is decreasing at lower temperature due to the freezing of some 

of the charge carriers at low temperatures. 

Table 3: Values of mobility, relaxation time, initial doping, threshold voltage, and sheet charge density of sub-THz 

device for Vg = 0 V at 295 and 4 K. 

T (K) μ (cm
2
/V.s) τ (ps) nd (cm

-2
) Vth (V) ns (Vg = 0) (cm

-2
) 

295 7760 0.19 1.65×10
12

 -0.90 1.61×10
12

 

4 15300 0.37 1.44×10
12

 -0.81 1.39×10
12

 

 

Figure 28 (a) presents calculated absorption spectra for the device at time of FM 

experiments at 4 K sample temperature for frequencies up to 400 GHz.  Data are plotted for the 

experimental gate-biases of 0, -0.1, and -0.2 V.  The figure includes only the low frequency 

portion of the broad plasmon resonance bands, whose peaks occur at 365, 340, and 320 GHz as 

indicated by triangle symbols above the respective curves.  These broad bands are the 

superposition of different order plasmonic modes due to the small τ value of the device; this 

behavior is explained in detail with Fig. 10 in theory section.  The BWO ranges (Fig.28-b) lie at 

frequencies where the absorptance curves are 35 and 65% of the maximum value, so that our 

experimental wavelengths are within the plasmon resonance absorption bandwidth. 

From Eq. 9, the lock-in output is proportional to dA/df, whose spectrum is presented in 

figure 28 (b) with the ranges of the available BWOs indicated.  Maxima of plasmon absorption 

bands are marked by triangle symbols, where the derivatives are zero.  From these curves, we 

expect the response to decrease with increasing frequency. 
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Figure 28: Calculated absorptance spectra.  Absorptance maxima are marked by symbols.  (b) Calculated dA/df 

spectra.  The horizontal bars indicate the available BWO ranges. 

 

First, radiation power of the BWO was measured with a crystal detector in place of the 

horn to better characterize incident sub-THz waves. The crystal detector outputs are presented in 

figure 29 for the frequency ranges of 40-60 GHz and 83-108 GHz with black and red curves, 

respectively.  Data was measured with the power leveling circuit on.  Although the measure 

output for the 40-60 GHz frequency is relatively flat at 2.1 V, it experiences a steady decrease 

with increasing wavelength in the high frequency range.  The sensitivity of the crystal detectors 

used in power measurements were 800 (1000) mV/mW for the low (high) frequency range.  
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Using these sensitivity values the radiation powers at the location of the gain horns is derived as 

2.6 and 1.7 mW for low and high frequency ranges, respectively.  The reported value for 83-108 

GHz range is calculated based on the average output of the crystal detector at 96 GHz. 

 

Figure 29: Outputs of the crystal detectors for the two frequency ranges of the experiment. 

 

As described in section 2.5, during the experiment sub-THz radiation was divided into 

two paths by a directional coupler.  The beams entering the side and main outputs were passed 

through 90 degree bend waveguides with radii r1 and r2 before being used to level the radiation 

power and being directed into the cryostat, respectively (figure 30). 

The power leveling was performed using a crystal detector mounted at the 10 dB side 

output of a directional coupler (DR).  As shown in figure 30, sub-THz beam entering this output 
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necessary to couple the radiation to the upward-looking cryostat (Fig 18).  Replacing the gain 

horn at the end of this bend with a crystal detector (Fig. 30) allows comparison of the power 

spectra measured at the two locations, as shown in figure 31. 

The results are that the power at the directional coupler is fairly flat and stable; however, 

the power at the position of the horn shows larger fluctuations.  In the low frequency region, the 

power at the horn is at least fairly flat, but in the high frequency region, there is a clear increase 

with frequency.  This can be attributed to two factors, namely, the radius mismatch between the 

two bend waveguides at the two ends of the direction coupler in the high frequency range 

waveguide set (WR-10 band) and additional losses and scattering at the longer wavelengths in 

the bent portion of the waveguide. 

 

Figure 30: Schematic of the experimental setup used to record radiation power of at outputs of directional coupler. 
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Figure 31: Radiation power collected at the directional coupler and output horn for the frequency range (a) 40-60 

GHz (b) 83-108 GHz.  Powers are normalized for comparison. 

 

The measured photoresponse of the device is shown in figure 32 for gate-biases of 0, -

0.1, and -0.2 V as black, red, and blue curves, respectively.  The effect was measured over the 

full 40-60 GHz and 83-108 GHz ranges, but only a portion of each measured spectrum, and only 

the nominal perpendicular polarization data (inset schematic), are presented.  The detected 

photoresponse shows sharp features at discrete frequencies as opposed to the continuous 

electrical response expected from Fig. 28 and Eq. 9.  This is explained by interference and the 

formation of standing waves, which is a well-known experimental artifact in sub-THz 

spectroscopy.  When standing wave nodes occur at the grating no plasmons can be excited, and 

hence there can be no electrical response.  At frequencies where anti-nodes occur, excitation of 

plasmons and a corresponding electrical response may occur.  Although the known standing 

wave phenomenon somewhat obscures the results, it is clear each individual peak weakens with 
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increasing negative gate bias suggesting reduced plasmon interactions with the decreasing 2DEG 

sheet charge as expected.  The noise of the system was measured by blocking the radiation and 

recording the lock-in output, and its root-mean-square (RMS) value was determined to be ~ 45 

nV. 

 

Figure 32: Photoresponse of the HEMT at T = 4 K to Sub-THz radiation for three gate biases.  Data are for nominal 

perpendicular polarization as expected from the horn orientation (inset schematic). 

 

Although the response for parallel polarization is expected to be zero since it should fail 
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was in fact observed for this nominal polarization.  Figure 33 presents such a photoresponse in 

the same frequency ranges as in Fig. 32.  While most of the photoresponse peaks in Fig 32 are 

measured to be above 2 μV, they drop to values smaller than 1.8 μV at measured data for 

nominal parallel polarization. 

 

Figure 33: Photoresponse of the HEMT at T = 4.  Data are for nominal parallel polarization as expected from the 

horn orientation (inset schematic). 
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experimental setup explained in section 2.6.  Figure 34 (a) presents the radiation spectral 

intensity recorded by a crystal detector when the polarization axes of emitting and collecting 

horns are aligned parallel for optimum collection.  When a wire grid polarizer is placed in the 

radiation path with wires oriented perpendicular to the beam polarization, the beam is unaffected 

as anticipated.  When the polarizer is rotated 90 degrees, the beam is strongly blocked, also as 

anticipated to be due to absorption by polarizer’s wire grids. 

Figure 34 (b) presents the recorded intensity when the collecting horn is rotated 90 

degrees.  In such orientation no radiation intensity should be recorded due to the polarization 

mismatch of the two gain horns, and in fact and a poor radiation is detected.  When the 

polyethylene cryostat window [51] is placed between the crossed horns, however, a jump in the 

signal is observed at the higher frequencies.  This is attributed to rotation of the polarization by 

some small angle due to scattering from imperfections in or on the window.  A mass of randomly 

oriented wires produces an even stronger response, suggesting that random reflections from 

metal surfaces inside the cryostat may also serve to randomly alter the incident polarization.  

These studies simply confirm that the well-known possible change of polarization angle on 

reflection or refraction [75] is likely occurring in our experiment. 
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Figure 34: Radiation intensity collected by the collecting horn, radiation power is not leveled. (a) when polarization 

axes of two horns are parallel (b) when polarization axes are perpendicular. 

 

Linear fits to the data in each full frequency range represent the average photoresponse 

and its frequency dependence for each Vg.  Figure 35 compares such fits to the theoretical dA/df 

spectra from Fig 28 (b).  To focus purely on the frequency dependence, each fit is vertically 

scaled by different values to match the corresponding theoretical dA/df curves.  These values are 

presented in table 4. 

Table 4: Scaling factors for different gate voltages at 40-60 GHz and 83-108 GHz frequency ranges 

Vg (V) 
Scaling Factors 

40-60 GHz 83-108 GHz 

0 2.61×10
-7 

2.01×10
-7

 

-0.1 3.28×10
-7

  1.97×10
-7

 

-0.2 4.13×10
-7

 2.00×10
-7

 

 In the low frequency range (Fig. 35), experiment is matched to theory at 47 GHz, while 
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with increasing Vg magnitude by less than 50% for the low frequency range.  In the high 

frequency range, these factors differ by less than 2%, which is within the experimental 

uncertainty.  In neither case is the vertical ordering of the fits changed by the scaling.  The need 

for different scaling factors in the low frequency range implies that the coupling coefficient B 

depends on gate bias. The coupling between sub-THz and plasmons should be completely 

accounted for by the theory represented by Fig. 28, but the coupling between plasmons and 

electrical effect, B, lacks a theory, and it might depend on ns, in principle. 

Linear fits shift downward with increasingly negative gate bias for all of the high 

frequency range and for all but the Vg = 0 case for the low frequency range, in qualitative 

agreement with the theory curves.  Interestingly, the ordering of the linear fits at 40 GHz is 

opposite that at 60 GHz, just as occurs with the dA/df curves.  Linear fits obviously cannot reflect 

the curvature in the dA/df spectra in this low frequency range.  In the high frequency region, the 

dA/df spectra are more nearly linear.  That the fit slopes differ from theory can be attributed to 

several factors, namely, standing waves, monotonic decrease in power with increasing 

wavelength due to waveguide attenuation, and monotonic decrease in power with decreasing 

wavelength due to scattering.  It is also interesting that the magnitude of the high frequency 

response is approximately half that of the low frequency range, though this apparent agreement 

with Fig. 28 (b) is partly coincidental since the high frequency BWO outputs only 65% as much 

power as the low frequency one.  The agreement between experiment and theory in both 

frequency and gate-bias dependence, though not exact, is sufficient to support the interpretation 

that the photoresponse is due to absorption by plasmons within their resonance band. 
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Figure 35: Comparison of theoretical dA/df curves with linear fits to measured photoresponse for nominal 

perpendicular polarization.  The upper (lower) group of curves corresponds to the upper (lower) frequency axis. 

 

To reflect the curvature in the dA/df spectra in the low frequency range, measured data 

was also fitted to other functions such as different order polynomials, Gaussian, and Lorentzian 

function.  Although the 2
nd

-order polynomial was found to explain the curvature in the data, none 

of the above functions gave a perfect match to the theoretical dA/df.  The detail explanation of 

these fittings is presented in appendix D. 
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0.02%.  This value exceeds by an order of magnitude the value we determine (0.01  from the 

data presented for AlGaAs/GaAs HEMTs at 763 GHz in [36]. 

 We may estimate responsivity (for our specific circuit configuration) as follows.  

Assuming the 2.6 mW mm-wave power at the input to the horn is uniformly distributed over its 

300 mm
2
 aperture, the intensity leaving the horn is 9 W/mm

2
.  After diverging on its several cm 

path to the device, with attenuation and scattering by the cryostat window, the intensity may be 

reduced by at least 10x at the sample.  The total power incident on the gate (with dimensions 195 

m × 250 m) is then about 42 nW.  This gives a responsivity estimate of 240 V/W.  We may 

also estimate the NEP of the device as a detector.  With maximum signal-to-noise ratio (SNR) of 

about 220, 42 nW mm-wave power (P) incident on the gate, and lock-in time constant of 3s 

giving the bandwidth f of 0.66 Hz [Appendix E], we estimate NEP = P/(SNR×f 
1/2

) = 235 

pW/Hz
1/2

. 

4.1.2 Results of amplitude modulation experiment 

For calculations of the plasmon frequencies and absorption spectrum, the value of ns is 

estimated from Eq. 5.  4 K I-V curves of the device was measured to determine the Vth value
 
to 

be -0.85 V, giving ns = 1.52×10
12

 cm
-2

 for Vg = 0 V.  Although, the same device were used for 

both AM and FM experiments, but its I-V curves were measured at the beginning of each of the 

experiments to account for aging and degradation effects.  This gave the effective sheet charge 

density for each of the experiments. 
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The plasmon absorption spectra are calculated as A = 1-T from Fig 11 and are presented 

in figure 36 for an unbiased device, VSD = 0 V, as a function of Vg.  Spectra are shown for the 

frequencies of up to 700 GHz.  At these low frequencies, fundamentals and harmonics are 

separated by less than their line widths, and hence are not resolved.  Their locations, indicated by 

symbols and identified in the figure, were determined by calculating spectra with an artificially 

large relaxation time (Fig. 10).  These locations are independent of relaxation time up to the limit 

at which they can no longer be separately resolved, which occurs at  = 0.5 ps (Fig. 10).  The two 

vertical dashed lines in Fig. 36 mark the experimental excitation frequencies 77 and 106 GHz, 

which lie within the absorption bandwidth of the fundamental. 

 

Figure 36:Calculated absorption spectra of the device at different Vg.  The extremes of the Vg range are indicated 

with neighboring curves differing by Vg steps of 0.2 V.  Two measurement frequencies are marked by vertical 

dashed lines. 
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The measured photoresponse of the unbiased device is presented in figure 37 as a 

function of Vg for the two excitation frequencies of 77 and 106 GHz.  Data for polarization with 

E-field parallel to the grating bars is also presented, and this parallel response has been reduced 

from 85% to about 20%, in comparison with [48], by improvements to the set up that increase 

the polarization purity at the sample.[48, 50-51]. 

For comparison, the calculated absorption of an unbiased device at 77 and 106 GHz are 

also plotted as a function of Vg in Fig 37 with the right axis indicating the absorption values 

(APPENDIX F).  These show slices of Fig. 36 in the location of the two dashed lines.  The colors 

of the absorption curves match the color of their respective dashed-lines in Fig 36 and 

photoresponse curves in Fig. 37.  The τ value used in the calculations was determined to be 0.25 

ps by calculating the best fit between peaks of the measured photoresponse and that of the 

absorption curves. The different τ value from FM measurement can be attributed to the gradual 

degrading of the sample material.  These curves peak at Vg values of -0.1 and 0.18 V for 77 and 

106 GHz radiations, respectively.  The measured photoresponse agrees with the calculated 

absorption in a number of significant ways.  Namely, the overall photoresponse to 106 GHz 

radiation is stronger and broader than the response at 77 GHz, and its maximum occurs at a more 

positive Vg value.  The peak separation for the two frequencies is about the same for theory and 

experiment (ΔVg ~ 300 ± 30 mV) and absolute Vg values for the measured photoresponse peaks 

also agree with that those of the calculated absorption spectra.
  

Also note that the absorption 

values vary by only 5% while the photoresponse varies by 88%.  This suggests a non-linear 

dependence of electrical response on absorption.  Another observation is that the measured 
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photoresponse peaks are sharper than the theoretical ones, which can also result from a non-

linearity. 

The measured data of unbiased device was also compared with the calculated absorption 

curves of an imaginary device with 20x smaller sheet charge densities and τ = 6.5 ps.  Calculated 

curves explained the single peak and its line-shape in measured data at 77 GHz as well as the 

double peak behavior of the 106 GHz data and their line-shape to be due to the crossing of 2
nd

 

order harmonic and overtaking of the 3
rd

-order mode as Vg decreases to higher negative values.  

It didn’t, however, explain the flat photoresponse to 77 GHz for Vg > 0.2 V, it rather showed a 

nearly monotonic increase in absorption for this Vg range.  This analysis also failed to predict the 

Vg separation between the two peaks in measured data at 106 GHz.  While experiment shows a 

separation of ~ 0.35 V, theory predicts the Vg separation to be ~ 0.6 V.  This separation between 

the 3
rd

 and 2
nd

 order harmonics depends on the factor ed/εtε0 which includes the fixed parameters 

of the device’s layer structure.  All these parameters are independent of the τ and ns values used 

in the calculations, which leaves the Vg separation independent of these values.  The detailed 

analysis is presented in appendix G. 

Figure 38 presents the measured photoresponse at 77 GHz for different VSD values which 

were measured sequentially in the same day.  The maximum photoresponse decreases almost 

two-fold when positive VSD is applied.  While the unbiased case shows a single peak, indicated 

by a symbol, two peaks appear with applied VSD.  The second peak seems to move toward lower 

gate biases with increasing VSD.  The first peak apparently has the opposite VSD dependence. 
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For finite VSD, the qualitative shape of the absorption curve becomes similar to that of the 

VSD = 0 curve for f = 106 GHz in Fig. 37. To lowest order, the effect of the splitting of the 

dispersion is simply to red (blue) shift the low frequency shoulder of the absorption spectrum by 

a frequency value that depends on the drift velocity, Δf.  The blue-shift, however, won’t be 

significant due to the broad harmonics in the higher frequencies (with line-widths of ~ 100 GHz) 

and therefore, only the red-shift will be considered.  This is qualitatively similar to artificially 

increasing the frequency of the source from 77 to 77 + Δf GHz.  The photoresponse of the device 

with applied VSD can then be compared with the absorption of an unbiased device at this higher 

frequency.  The first photoresponse peaks are observed at Vg values of -0.04 and 0.05 V for 

applied VSD of 0.25 and 0.5 V, respectively.  The locations of these maxima can be fitted to the 

gate-bias dependent absorption curves, with excitation frequency as fitting parameter.  This 

results in two artificially high excitation frequencies of 84 and 93 GHz for VSD of 0.25 and 0.5 V, 

respectively.  These two frequencies are 7.7% and 19.2% larger than 77 GHz.  Drift velocity 

values can then be obtained by fitting Eqs. 3 and 4 to above mentioned percentages.  They are 

concluded to be 1.44 and 3.55×10
5
 m/s for VSD values of 0.25 and 0.5 V, respectively.  These 

values are well in the range of previously reported saturation velocities for this material system 

[68-69]. 

That a DC current through the drain and load resistor is observed when the source is 

grounded implies a significant photovoltaic (PV) response [36].  The finite applied positive VSD 

results in an electron current from Drain to the Source, which induces a photoconductive (PC) 

behavior in the channel [37].  The possible plasmon induced PC-like photo-current in the biased 



54 

device will then flow in the opposite direction of that of the PV-like, decreasing the overall 

photoresponse.  This can result in the measured 2-fold drop in the overall effect.  Source-Drain 

current, ISD, saturates at VSD < 0.5 V for Vg < -0.1 V, however, for more positive gate-biases the 

transistor operates in the Ohmic region for 0.25 V < VSD < 0.5 V. Therefore, the induced PC-like 

effect can be more eminent at higher Vg values resulting in the observed bigger drop in 

photoresponse when device is biased at VSD = 0.5 V for the large positive Vg. 

 

Figure 37: Calculated absorption of the device along with the measured photoresponse as a function of the applied 

Vg at free-space frequencies of 77 and 106 GHz. Photoresponse is measured with polarization perpendicular to the 

grating bars, except for one of the curves as indicated. 
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Figure 38: Measured photoresponse of the InGaAs/InP HEMT to free-space frequencies of 77 GHz at different 

applied VSD values. 

 

NEP of the detector is extracted as a function of Vg from the measured photoresponse and 

is plotted in figure 39 for the two measurement frequencies.  In these calculations, NEP = 

P/(SNR×Δf 
1/2

), where P is the radiation power at the device area, SNR = Photoresponse (Vg) / 

Noise and is the signal to noise ratio, and Δf is the measurement bandwidth taken as 0.05 Hz 

from 10s lock-in time constant.  P is calculated by assuming that the measured 12.2 mW radation 

power at the input to the horn is uniformly distributed over its 695 mm
2
 aperture, giving an 

intensity of 17.5 µW/mm
2
.  We assume that diffraction and scattering may reduce the actual 

intensity ten-fold at the sample.  The total power incident on the 195 µm × 250 µm channel is 

then about 85 nW.  The noise was determined to be ~ 5 nV by blocking the radiation and 

recording the lock-in output. 
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Figure 39:Calculated NEP of the device for the two measurement frequencies.  The minimum measured NEP is 113 

pW/Hz
1/2

 at 106 GHz. 

 

From Fig. 39, the minimum NEP value is determined to be 113 pW/Hz
1/2

 and is measured 

at the peak of the response to the 106 GHz radiation.  This is comparable to the previously 

reported values [48, 52].  The smaller value reported in [53] for InGaAs/InP based detectors at 

room temperature at 1 THz radiation can be partly attributed to the higher measurement 

frequency (higher ωτ) and more efficient collection with a narrow band antenna.  The peak 

responsivity of our detector is calculated from the estimated incident power at the device and its 

peak photoresponse to be 200 V/W, which is approximately equal to previously reported values 

[48].  
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4.2 THz HEMT Device 

4.2.1 FTIR Measurement of plasmonic spectra (Bomam DA8 Setup) 

Following the approach discussed in section 4.1.1, device’s I-V characteristics were 

measured at room and 4 K temperatures for different applied Vg.  Saturation ISD values for each 

Vg were then used to determine relaxation time and sheet charge densities of the device (Table 

5). 

Table 5: Values of mobility, relaxation time, initial doping, and sheet charge density of THz device for Vg = 0 V at 

295 and 4 K. 

T (K) μ (cm
2
/V.s) τ (ps) nd (cm

-2
) Vth (V) ns (Vg = 0) (cm

-2
) 

295 9700 0.24 1.50×10
12

 -0.82 1.46×10
12

 

4 21840 0.53 1.37×10
12

 -0.74 1.33×10
12

 

 

Presented in figures 40 and 41 are calculated transmission spectra for Vg values of 0, -0.1, 

and -0.2 V at room and 4 K sample temperatures, respectively.  At room temperature, the 

plasmon fundamental appears at 2.89 THz at zero bias and red-shifts to 2.51 THz under -0.2 V 

bias.  At zero bias, the 2
nd

-order harmonic appears at 4.77 THz.  For low temperatures, the 

fundamental appears at 2.76 THz for zero gate bias and red-shifts to 2.35 THz for -0.2 V bias.  

The zero bias 2
nd

-order harmonic appears near 4.55 THz.  Calculated low temperature 

resonances are sharper and deeper than their room temperature counterparts which is attributed 

to larger relaxation time when sample is cooled (Section 2.1, Fig. 10). 
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Figure 40: Calculated Plasmon spectra of THz HEMT device at room temperature 

 

 

Figure 41: Calculated Plasmon spectra of THz HEMT at 4K sample temperature 
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a second range of good modulation efficiency observed at 4.5-7.5 THz.  The useful range for the 

12 micron beamsplitter is evidently 1-7 THz.  This beamsplitter is thus the best choice if the 

plasmon resonance fundamental occurs at 2.76 THz as predicted by theory (Fig. 41).  We note 

that these power spectra were collected with the sample already at helium temperature and 

positioned in front of the bolometer within its cryostat.  Hence any plasmon features should 

already be present. 

 

Figure 42: Phase power spectrum for THz HEMT using two different beam splitters.  Thicknesses of beam splitters 

are labeled beside each plot in the graph. 

 

The spectra plotted in Fig. 42 are at low resolution and were obtained from a short double 
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Figure 43 presents a higher resolution transmitted power spectrum using the 12 µm 

beamsplitter.  This spectrum is obtained using a single-ended interferogram and a Cosine FFT 

with the phase correction obtained from the Fig. 42 measurement.  A strong narrow feature with 

derivative like line shape and ~ 0.06 THz width is observed near 2.76 THz.  Such line shape can 

occur if there is an absorption line in a spectral range where the phase is poorly characterized.  A 

strong line present during the phase characterization, even if unresolved, could cause such a 

phase error.  While sharp features in the low resolution phase spectrum are unexpected on 

physical grounds, one does occur precisely at 2.76 THz, as shown in figure 44.  These 

considerations strongly suggest the presence of a sharp strong absorption line in the sample. 

There is also a suggestion of something in the higher resolution transmission spectrum 

(Fig. 43) at 4.95 THz, and there is a corresponding feature in the low resolution phase (Fig. 44).  

Comparison with the calculated spectrum, also plotted in Fig. 43, suggests that the 2.76 THz 

feature be identified with the plasmon fundamental and that the 4.95 THz feature might be 

identified as the harmonic.  

Working against this assignment is the absence of any significant dependence on gate 

bias of the observed features.  The spike centered at 2.76 THz becomes broader and weaker with 

increasing negative gate bias which can be a sign of a shift to lower frequencies, however, 

expectations supported by calculations are for an observable red-shift of Δf ~ 0.5 THz with 

negative gate bias (Fig. 41).  It was confirmed that the HEMT is working by measurement of the 
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I-V Curves, which also allowed an estimate of sample temperature by comparison with earlier T-

dependence characterization of device: T=10K. 

 

Figure 43: Transmission spectrum of InP HEMT at T = 4 K for three different gate biases. 

 

 

Figure 44: Phase spectrum with sample in the beam.  Features in the phase at frequencies associated with features in 

the transmission spectrum are circled. 
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4.2.2 FTIR Measurement of plasmonic spectra (Bruker Vertex 80v Setup) 

Transmission spectra were measured in the frequency range of 1.8 to 5.3 THz and shown 

in figure 45.   Intensity oscillations, possibly due to Fabry-Perot resonances in the InP substrate 

of the device, are present in both plots. Plasmon absorptions can be identified by any distortion 

in the oscillations pattern due to the induced change in the Q-factor of Fabry-Perot cavity. 

In Fig. 45, possible plasmon features for each Vg are marked with red arrows and are in 

qualitative agreement with theory (Fig. 41) in a number of ways, namely, they shift to lower 

frequencies by increasing negative gate-bias and higher-order resonances are weaker than the 

lower ones.  These features, therefore, may be attributed to 2D-plasmon resonances.  Frequencies 

of observed resonances are, however, different from the theoretical calculations (Fig. 41) and 

their harmonic numbers cannot be defined with certainty, hence they have been labeled as n
th

 and 

(n+1)
th

-order.  Identified resonance frequencies in Vg = 0 V spectrum are not consistent with the 

ones reported in Fig. 43 despite the fact that the same device was measured with two different 

FTIR spectrometers. 
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Figure 45: Transmission spectra of the HEMT in frequency range 1.8-5.3 THz. 

 

To better understand the measured data, n
th

 and (n+1)
th

 features were assumed to be 1
st
 

and 2
nd
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symbols in Fig 46 with ns as fitting parameter.  Colored curves in Fig. 46 present such fits with 

colors matching that of their respective data points.  Obtained Sheet charge density values are 

compared with the ones calculated from measured I-V curves in table 6.  Absolute values of 
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noted that dispersion fits in Fig. 46 don’t match the data symbols, which can hint on possibly 

wrong mode numbers and explain the discrepancies between the two sets of calculated sheet 

charge densities. 

 

Figure 46: Frequency vs mode number of identified features.  Both data points (symbols) and fits (lines) are presented for four 

measurement gate biases of 0.1, 0, -0.1, and -0.2 V. 

 

Table 6: Comparison of ns values derived from transmission spectra with those derived from measured I-V curves 
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-2
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12
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 From Eq. 1, it is seen that ratios ωn+1/ωn are only affected by the value of nd/a and not by 

the chosen ns.  Thus, working with resonant frequency ratios as opposed to the absolute 

frequencies, any experimental uncertainty involving the sheet charge density can be neglected.  

Figure 47 presents such ratios as a function of d/a for ω2/ω1 and ω3/ω2 with black and red 

curves, respectively.  Black symbol in Fig. 47 is calculated for the measured device from 

transmission spectra (Fig. 45) with ωn+1/ωn = 1.47, and d/a = 38 nm/500 nm = 0.076.  This 

experimental point doesn’t correspond with any of the calculated curves which might point to the 

presence of a virtual gate in the structure as suggested by [76]. 

Based on device layer structure (Table 2) a second 2DEG layer is located about 20 nm 

below the top one (Fig. 13).  In such structure, the top 2DEG can potentially act as a virtual gate, 

with its charge carriers mirroring the polarization of the grating bars under THz radiation.  The 

second 2DEG layer will then host the 2D-plasmon oscillations, changing the effective 2DEG 

depth to d = 20 nm (separation of the two 2DEGs).  This changes the experimental value of d/a 

from 0.076 to 0.04 resulting in the black symbol in Fig 47 to shift to the left (hollow circle).  

This shift is, however, not enough to associate this experimental value with ω3/ω2 curve. 
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Figure 47: ωn+1/ωn ratio as a function of d/a.  The experimental value of the device is shown with the black symbol. 

 

The FTIR experiments for far-IR transmission measurements were repeated for number 

of times to check the consistency of the measured data.  The recorded spectra were highly 

influenced by low throughput of the device (due to its small dimensions of the gate region when 

compared with the wavelength of the light), as well as strong atmospheric absorption.  These 

resulted in noisy spectra with low SNR values, making them unrepeatable and inconclusive for 

the tested THz device. 
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CHAPTER 5 CONCLUSION AND SUMMARY 

In conclusion, we investigated sub-THz and THz resonant detectors based on plasmon 

excitation in 2DEG of InGaAs/InP-based HEMTs.  Investigated devices were fabricated from a 

double-quantum-well InGaAs/InAlAs heterostructure.  A grating coupler was used to 

compensate for the momentum mismatch between free space radiation and 2D-plasmons.  For 

sub-THz devices grating gate of 9 μm period and 22% duty cycle were fabricated, while for THz 

device grating period was designed to be 0.5 μm with 80% duty cycle.  The photoresponse of the 

sub-THz device was measured to GHz radiation in two frequency modulation (FM) and 

amplitude modulation (AM) experiments.  Transmission spectra of the THz device were also 

measured with FTIR spectrometer to investigate the excitation of 2D-plasmons in the channel of 

the device. 

For FM experiments Source and drain of the sub-THz device were grounded with gate 

biased at 0, -0.1, and -0.2 V with respect to the ground.  Photoresponse was recorded as the 

voltage drop across a load resistor connected to the drain while frequency of the radiation was 

swept in two ranges of 40-60 and 83-108 GHz that are well within the plasmon resonance 

bandwidth.  Measured photoresponse was strongly affected by formation of standing waves and 

uncertainties over polarization of the incident light.  Further measurements proved that light 

scattering from the rough surface of the polyethylene window and reflections from different 

metallic surfaces inside cryostat can alter the polarization state of the incident radiation, and 

therefore, cause the observed photoresponse at undesired nominal polarization (with E-field 



68 

parallel to the grating bars).  Moreover, to compare experiment with theory, linear functions 

were fitted to the data in each full frequency range.  These represent the average photoresponse 

and its frequency dependence for each Vg. linear fits were compared with theory calculation and 

results were found to be in qualitative agreement.  Incident radiation power at the surface of the 

device was estimated to be ~42 nW and was used to calculate responsivity and NEP of the 

detector as 240 V/W and 235 pW/Hz
0.5

, respectively. 

 For AM experiments, gate-bias tunable electrical photoresponse to sub-THz 77 and 106 

GHz radiations was measured in our InGaAs/InP sub-THz HEMT.  Source and drain of the sub-

THz device were grounded with gate voltage was swept from -0.5 V to 0.85 V with Vg step sizes 

of 0.01 V with respect to the ground.  The photoresponse was measured for both unbiased (VSD ~ 

0 V) and biased (VSD = 0.25 and 0.5 V) configurations.  Radiation generated by the BWO was 

guided into the cryostat via a rectangular waveguide vacuum-sealed at a standard waveguide 

junction by a rubber o-ring with a sheet of mylar.   This reduced standing wave interferences and 

polarization scrambling in comparison to FM experiments by having the output of the 

polarization-preserving horn just few millimeters above the sample, which in turn, reduced the 

response when the polarization is parallel to the grating bars by 5-folds when compared with FM 

experiments.  The photoresponse spectra of the unbiased device showed a single peak moving to 

the higher Vg values for higher radiation frequencies, as expected from theory.  The spectra for 

biased device, however, showed two photoresponse peaks.  One moving to the higher Vg values 

and the other one moving in the opposite direction with increasing applied source-drain voltage, 

VSD.  The formation of two oppositely moving peaks were explained in terms of splitting of the 
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left and right moving plasmons when a VSD ≠ 0 V is applied.  The measured photoresponse also 

showed some nonlinear behaviors, significantly, the resonance line-widths, as well as the 

magnitude of the overall plasmon induced photoresponse, are not consistent with values obtained 

via theoretical absorption spectra calculations which point to a nonlinear relation between the 

two. Such differences between photoresponse and absorption have been observed previously and 

in other systems, while the plasmonic absorption in group III-V heterostructures are typically ~ 

4-5% at resonance, a resonant photoresponse of 9-times stronger than the baseline is reported for 

GaAs-devices.  Detector parameters such as responsivity and minimum NEP were also estimated 

for the AM experiment to be 200 V/W and 113 pW/Hz
0.5

, respectively. 

In both AM and FM experiments, a photoresponse to sub-THz radiation was observed for 

VSD = =0V, which is a signature of the photovoltaic nature of the observed electrical effect.  In 

both cases, we attribute the measured photoresponse to excitation of plasmons in the 2DEG and a 

corresponding change in channel conductance, due to the significant agreements between the 

2D-plasmons theory and the measured data.  Such a device may find application as a chip-scale 

tunable sub-THz detector.  In principle, by employing a smaller grating period, the device may 

be scaled to THz frequencies, where resonances are sharper and tuning exceeds the resonant line 

width. 

The plasmonic transmission spectra of the THz device were measured with multiple 

FTIR spectrometers to investigate excitation of plasmon resonances.  In all cases the transmitted 

signal was masked by high noise levels due to strong atmospheric absorption of THz light and 
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low throughput of the device.  The low throughput was attributed to the small gate region 

dimensions when compared with the wavelength of the incident beam.  Incident light is highly 

scattered when its wavelength is in the same range of aperture dimensions, which translates into 

extremely poor light throughput and small signal-to-noise (SNR) ratio that can suppress 

absorption features due to 2D-plasmon excitation.  The transmission measurements of the THz 

device were therefore found to be unrepeatable and inconclusive. 

 

  



71 

APPENDIX A: 

DERIVATION OF THE DISPERSION RELATION OF PLASMONS FOR A 

DEVICE WITH APPLIED VSD 
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Plasmons can be generated in the 2DEG of a grating gated HEMT (Fig. 1) by an incident TM
x
 

polarized light with the magnetic vector potential  ⃗    ̂ .  The wave function ψ for such 

potential can be defined as 

ψ = {
   

 (     )                                              

   
 (     )      (   )              

                                                                     

 ( 10 ) 

Where 2DEG and Gate are assumed to be at z = 0 and d, respectively.  δ, ω, and k are assumed to 

be attenuation constant in z-direction, frequency of the incident light, and plasmon complex 

wavevector, respectively.  The wave equation for the wavefunction of Eq. 10 can be written as 

{
      

   
 

                        

       
   

 

                    
 ( 11 ) 

Magnetic and electric field components can be defined as follows for the incident TM
x
 mode 

{
 ⃗⃗⃗  (      )

 ⃗⃗  (       )
 ( 12 ) 

For the magnetic field, therefore, we will have 

 ⃗⃗⃗   ⃗⃗⃗   ⃗   ⃗⃗⃗  
  

  
 ̂ ( 13 ) 

Which will give the y-component of the magnetic field as 
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Hy = {
    

 (     )                                              

    
 (     )      (   )              

                                                                        

 ( 14 ) 

The electric field components can be derived from the Ampere’s law which can be written as 

[77] 

  ̅

  
 

 

 
 ̅   ̅   

  ̅

  
 

 

 
( 

   

  
   

   

  
) ( 15 ) 

Solving for the x- and y-components of the electric field we will have 

Ez = 
   

  
{
   

 (     )                                              

   
 (     )      (   )              

                                                                      

 ( 16 ) 

and 

Ex = 
  

   
{
   

 (     )                                                  

    
 (     )      (   )              

                                                                        

 ( 17 ) 

Field components above the gate region will be Zero due to the presence of the gate metal.  

Boundary conditions can be defined as Ex|z=0+ = Ex|z=0- and Jx = Hy|z=0+ - Hy|z=0- for the 

tangential component of the electric and magnetic fields, respectively [77].  Applying these 

boundary conditions to Eqs. 14, 16 and 17 we will get 

            ( 18.1 ) 
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    (          ) 
 (     ) ( 18.2 ) 

On the other hand from Ohm’s law we have Jx = σEx|z=0, with σ being the surface conductivity of 

the 2DEG.  This gives the x-component of the surface current density as 

   
  

   
    

 (     ) ( 19 ) 

Substituting Eq. 17.1 into Eq. 19 will give 

   
  

   
          (     ) ( 20 ) 

Comparing Eq. 20 with Eq. 18.2 we will have 

  

   
 (       ) ( 21 ) 

Conductivity of the 2DEG layer is required to derive the dispersion relation of two-dimensional 

plasmons.  To find conductivity, 2DEG is considered as a sea of electrons and 

magntohydrodynamic relations are solved for the system.  From Drude model, for equation of 

motion of electrons in a conductor layer we have 

 
  ⃗⃗

  
 

 ⃗⃗

 
  

 

 
 ⃗⃗ ( 22 ) 

For a sea of electrons velocity will be a function of both position and time and it can be defined 

as 
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  ⃗  
  ⃗⃗

  
   

  ⃗⃗

  
   

  ⃗⃗

  
   

  ⃗⃗

  
    ( 23 ) 

Dividing both sides of Eq. 23 by dt, velocity derivative with respect to time can be written as 

  ⃗⃗

  
   

  ⃗⃗

  
   

  ⃗⃗

  
   

  ⃗⃗

  
 

  ⃗⃗

  
  ( 24 ) 

Rewriting Eq. 24 in terms of the Gradient operator 

  ⃗⃗

  
  ⃗ (  ⃗)  

  ⃗⃗

  
 ( 25 ) 

Substituting Eq. 25 into Eq. 22 will give us the Euler equation for electrons in the 2DEG layer as 

 ⃗ (  ⃗)  
  ⃗⃗

  
  

 ⃗⃗

 
 

 

 
 ⃗⃗ ( 26 ) 

Continuity relation for electrons can also be defined as 

 ⃗⃗⃗ (  ⃗)  
  

  
   ( 27 ) 

 In small Signal analysis the external radiation can be defined as an electric field with the 

following relation 

    
       

    (     ) ( 28 ) 

Since the electron density and velocity in the 2DEG depend directly on the applied E-field we 

can write 
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    (     ) ( 29 ) 

          (     ) ( 30 ) 

Inserting Eqs. 29 and 30 into the continuity relation (Eq. 27) we will get 

        (     )         (     )        
    (     )          

     (     )    ( 31 ) 

From the small signal analysis, the last term of Eq. 31 can be ignored and vx
ss

 can be found as 

  
   

     

   
    ( 32 ) 

Same as Eq. 31, if we substitute Eq. 29 and 30 into Euler relation, Eq. 26, and consider small 

signal analysis we will get 

     
    (     )        

    (     )  
  

     
  

    
    (     )  

  

 
 

  
  

 
  (     ) ( 33 ) 

Separating the terms with and without exponential factor, it is concluded that 

{
 
 

 
 (        

 

 
)   

   
  

    
  

   
   

    

 ( 34 ) 

Substituting Eq. 32 into Eq. 34 will give 

 (        
 

 
)

     

   
    

  

    
   ( 35 ) 
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On the other hand from Ohm’s law current density can be written as J = -qnv = σE.  Substituting 

Eqs.28-30 for E, v, and n in the J relation, we will have 

            
    (     )         

 (     )        
     (     ) 

        
    (     ) ( 36 ) 

Considering small signal analysis and separating the term with and without exponential factor we 

will get 

{

  (    
        )     

  

          

 ( 37 ) 

Replacing for vx
ss

 in Eq. 37 from Eq. 32 it can be derived that 

    
  

   
  

   ( 38 ) 

Substituting Eq. 38 in Eq. 35 will give 

(        
 

 
)

     

  

  

   
  

   
  

    
   ( 39 ) 

Crossing the Ex
ss 

from both sides of the Eq. 39 and solving for σ, surface conductivity can be 

obtained as 

  
   

  

 

(     )(        
 

 
)
 ( 40 ) 
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Incorporating Eq. 40 for conductivity into Eq. 21, it can be calculated that 

(       )  
    

    

 

(     )(        
 

 
)
 ( 41 ) 

Assuming a highly confined 2DEG (δd<<1) we will have              ⁄         ⁄  which 

simplifies Eq. 41 as 

        (     ) (        
 

 
) ( 42 ) 

Where A = Ne
2
/4εm

*
.  Substituting for δ

2
 from the wave equation, 

   (   
   

 

  )   (     ) (        
 

 
) ( 43 ) 

For the device reported here k = 2π/a with a = 9 μm, ω = 2πf with f = 100 GHz, εr = 13.90.  this 

will give k
2
 ~ 4.9×10

11
 m

-2
 and εrω

2
/c

2
 ~ 2.64×10

8
 cm

-2
.  Therefore εrω

2
/c

2 
factor can be ignored 

and δ
2
 ≈ k

2
.  Re-arranging Eq. 43 for is a quadratic function of k we will have 

(      
 )   (     

   

 
)   (   

  

 
)    ( 44 ) 

Solving for k and assuming ωτ >> 1 we will have 

     
 (

   
 

     ) √ 

 (      
 )

 ( 45 ) 

   
  
 

  
        ( 46 ) 
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Which are similar to Eq. 3 and 4 in the Chapter 2. 
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APPENDIX B:  CALCULATION OF THE DISPERSION CURVES 
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This Program was developed in Wolfram Mathematica to calculate the dispersion curves of the 

n
th

-order harmonic for devices with and without applied VSD 

e=1.6 10^-19; (*electron Charge, C*) 

p=N[Pi]; 

eps0=8.85 10^-12; (*Vacuum Permittivity, F/m*) 

epst=12.24; (*Relative Permittivity of InAlAs layer*) 

epss=13.90; 

mstar=0.043; (*Effective electron mass*) 

me=9.11 10^-31; (*Electron mass, Kg*) 

d=38 10^-9; (*2DEG depth, m*) 

tau=0.25 10^-12; (*Relaxation time S*) 

Vsd=0.5; (*Applied source drain voltage, V*) 

L=250 10^-6; (*Channel Length, m*) 

a=9 10^-6; (*Grating Period, m*) 

meu=e tau /(me mstar);(*mobility, V^2/m.S*) 

v01=1 10^5; 

v02=0;(*Drift Velocity m/s*) 

p=N[Pi];(*3.14*) 

A[ns_]:=(ns*e^2)/(4 epst eps0 me mstar) 

qn[n_]:=2*p*n/a 

neu1[v0_,ns_,n_]:=((2*v0*qn[n])+Sqrt[16*A[ns]*d*(qn[n]^2)])/(4 p) 

neu2[v0_,ns_,n_]:=((2*v0*qn[n])-Sqrt[16*A[ns]*d*(qn[n]^2)])/(4 p) 

t1=Table[{i,neu1[v01,i,1]},{i,0,3 10^16,1 10^14}]; 

t2=Table[{i,-1*neu2[v01,i,1]},{i,0,3 10^16,1 10^14}]; 

t3=Table[{i,neu1[v02,i,1]},{i,0,3 10^16,1 10^14}]; 

t4=Table[{i,-1*neu2[v02,i,1]},{i,0,3 10^16,1 10^14}]; 

Fig1=ListPlot[t1]; 

Fig2=ListPlot[t2]; 

Fig3=ListPlot[t3]; 

Fig4=ListPlot[t4]; 

Show[Fig1,Fig2,Fig3,Fig4] 

SetDirectory["D:\\Most up to date folders\\Research\\HEMT Project\\HEMT-UCF\\HEMT 

Data\\PLS020 Series\\PLS023C (Sub-THz device-UCF)\\Calculated Plasmon Spectrum\\11-15-

2013 (Nov 2013 data)\\Dispersion Relation analysis"] 

Export["w(+) vs ns.txt",t1,"CSV"] 

Export["w(-) vs ns.txt",t2,"CSV"] 

Export["w0 vs ns.txt",t3,"CSV"] 
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This program was developed in Wolfram Mathematica to calculate the frequency of the 

fundamental plasmon harmonic for a given range of sheet charge densities in a biased and 

unbiased device. 

e=1.6 10^-19; (*electron Charge, C*) 

ns=1.51 10^16; (*Sheet Charge Density*) 

p=N[Pi]; 

eps0=8.85 10^-12; (*Vacuum Permittivity, F/m*) 

epst=12.24; (*Relative Permittivity of InAlAs layer*) 

epss=13.90; 

mstar=0.043; (*Effective electron mass*) 

me=9.11 10^-31; (*Electron mass, Kg*) 

d=38 10^-9; (*2DEG depth, m*) 

tau=0.25 10^-12; (*Relaxation time S*) 

Vsd=0.5; (*Applied source drain voltage, V*) 

L=250 10^-6; (*Channel Length, m*) 

a=9 10^-6; (*Grating Period, m*) 

meu=e tau /(me mstar);(*mobility, V^2/m.S*) 

v01=1 10^5; 

v02=0;(*Drift Velocity m/s*) 

p=N[Pi];(*3.14*) 

A=(ns*e^2)/(4 epst eps0 me mstar); 

neu1[v0_,k_]:=((2*v0*k)+Sqrt[16*A*d*(k^2)])/(4 p) 

neu2[v0_,k_]:=((2*v0*k)-Sqrt[16*A*d*(k^2)])/(4 p) 

neu1[3.55 10^5,702403] 

-neu2[3.55 10^5,702403] 

t1=Table[{i,neu1[v01,i]},{i,0,1.5 10^6,1 10^4}]; 

t2=Table[{i,-neu2[v01,i]},{i,0,1.5 10^6,1 10^4}]; 

t3=Table[{i,neu1[v02,i]},{i,0,1.5 10^6,1 10^4}]; 

t4=Table[{i,-neu2[v02,i]},{i,0,1.5 10^6,1 10^4}]; 

Fig1=ListPlot[t1]; 

Fig2=ListPlot[t2]; 

Fig3=ListPlot[t3]; 

Fig4=ListPlot[t4]; 

Show[Fig1,Fig2,Fig3,Fig4] 

SetDirectory["D:\\Most up to date folders\\Research\\HEMT Project\\HEMT-UCF\\HEMT 

Data\\PLS020 Series\\PLS023C (Sub-THz device-UCF)\\Calculated Plasmon Spectrum\\11-15-

2013 (Nov 2013 data)\\Dispersion Relation analysis"] 

Export["w(+) vs ns.txt",t1,"CSV"] 
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Export["w(-) vs ns.txt",t2,"CSV"] 

Export["w0 vs ns.txt",t3,"CSV"] 
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APPENDIX C: CALCULATION OF THE TRANSMISSION SPECTRUM 

OF THE DEVICE. 
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This program is written in Wolfram Mathematica to calculate the transmission spectrum of a 

plasmon based HEMT device based on the recipe provided in Theory of 2D-grating couplers 

[ZSM Theory]  

(*Fundamental constants, Gaussian units*) 

 

e=4.80325 10^-10 (*electron charge, Sqrt[dyne-cm^2]*); 

c=2.99792 10^10 (*speed of light, cm/s*); 

m=9.10939 10^-28 (*electron mass, g*); 

p=N[Pi]; 

eps0=10^7/(4 p (c/100)^2)  (*permittivity of free space, C^2/N-m^2*); 

 

(*Device parameters*) 

 

ns=0.037 10^12;(*2DEG carrier density, cm^-2*) 

d=380 10^-8 (*2DEG depth, cm*); 

tOVERa= 0.22(*ratio of grating window widths to grating period*); 

a=9 10^-4 (*grating period, cm*); 

t=tOVERa a (*width of grating windows, cm*); 

 

(*Materials parameters*) 

 

mef=0.043m (*electron effective mass gram*); 

tau=25 10^-12 (*relaxation time, sec*); 

es=13.90(*In[.68]Ga[.32]As substrate permittivity*); 

eo=12.24(*In[.52]Al[.48]As top layer permittivity*); 

rh=1050 4 p eps0/100 (*2D resistivity in grating gaps, first # is ohms, rest converts to s/cm*); 

rl=rh 0.1 4 p eps0/100 (*2D resistivity of grating bars, s/cm*); 

 

(*experimental parameters*) 

 

wm=2 p c 0.1 (*minimum frequency, rad/s*); 

dw=2 p c 0.1 (*frequency resolution rad/s*); 

 

(*Derived quantities for device*) 

 

ra=(t/a) rh + (1-t/a) rl(*average 2D surface resisitivity s/cm*); 

sa=(t/a) (1/rh) + (1-t/a) (1/rl) (*average 2D surface conductivity, cm/s*); 

g=2 p/a (*grating wavevector, 1/cm*); 
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(*Defined functions*) 

vt[n_,time_]:= n e^2 time/mef (*cm/s*); 

d1[x_,time_]:=(1-x^2 time^2)^2 + 4 x^2 time^2; 

alf[x_,n_,time_]:=vt[n,time] (1+x^2 time^2)/d1[x,time]; 

bet[x_,n_,time_]:=vt[n,time] x time (1+x^2 time^2)/d1[x,time]; 

d2[x_,k_,n_,time_]:=(es+eo Coth[k g d] - 4 p k g bet[x,n,time]/x)^2+(4 p k g alf[x,n,time]/x)^2; 

ak[x_,k_,n_,time_]:=eo^2 (1-Coth[g k d]^2) alf[x,n,time]/d2[x,k,n,time]; 

bk[x_,k_,n_,time_]:=((4 p g k/x) (1+eo Coth[g k d]) (alf[x,n,time]^2+bet[x,n,time]^2)-(2(es+eo 

(1+es) Coth[g k d])+eo^2(1+Coth[g k d]^2)) bet[x,n,time]+(es+eo Coth[g k d]) (es+eo (1+es) 

Coth[g k d]+eo^2) (x/(4 p g k)))/d2[x,k,n,time]; 

rtl[k_]:=(2/(p k)) (rh-rl) Sin[p k t/a]; 

uE[x_,n_,time_]:=(1/ra)-(1/2) Sum[(rtl[k]/ra)^2 ak[x,k,n,time],{k,1,10}]; 

uF[x_,n_,time_]:=-(1/2) Sum[(rtl[k]/ra)^2 bk[x,k,n,time],{k,1,10}]; 

bigD[x_,n_,time_]:=((1+Sqrt[es]+(4 p/c) (alf[x,n,time]+uE[x,n,time])) (1+Sqrt[es]+(4p/c) 

(alf[x,n,time] + sa))-(4 p/c)^2 ((bet[x,n,time]+uF[x,n,time]) bet[x,n,time]))^2+((4 p/c) 

(bet[x,n,time]+uF[x,n,time]) (1+Sqrt[es]+(4 p/c) (alf[x,n,time]+sa))+(4 p/c) bet[x,n,time] 

(1+Sqrt[es]+(4 p/c) (alf[x,n,time]+uE[x,n,time])))^2; 

Eyy2[x_,n_,time_]:=(4(1+Sqrt[es]+(4 p/c) (alf[x,n,time]+sa))^2+(8 p 

bet[x,n,time]/c)^2)/bigD[x,n,time]; 

Ezy2[x_,n_,time_]:=0.; 

Ty[x_,n_,time_]:=Sqrt[es] (Eyy2[x,n,time]+Ezy2[x,n,time]); 

Ezz2[x_,n_,time_]:=(4(1+Sqrt[es]+(4 p/c) (alf[x,n,time]+uE[x,n,time]))^2+(8 p/c)^2 

(bet[x,n,time]+uF[x,n,time])^2)/bigD[x,n,time]; 

Eyz2[x_,n_,time_]:=0.; 

Tz[x_,n_,time_]:=Sqrt[es] (Ezz2[x,n,time]+Eyz2[x,n,time]); 

TtotDevice[x_,n_,time_]:=(Ty[x,n,time]+Tz[x,n,time])/2; 

 

(*Reference sample quantities*) 

 

tOVERaref= 1; 

tref=tOVERaref a (*width of grating windows, cm*); 

 

(*Derived functions for reference*) 

 

raref=(tref/a) rh + (1-tref/a) rl(*average 2D surface resisitivity s/cm*); 

saref=(tref/a) (1/rh) + (1-tref/a) (1/rl) (*average 2D surface conductivity, cm/s*); 

rtlref[k_]:=(2/(p k)) (rh-rl) Sin[p k tref/a]; 

uEref[x_,n_,time_]:=(1/raref)-(1/2) Sum[(rtlref[k]/raref)^2 ak[x,k,n,time],{k,1,10}]; 

uFref[x_,n_,time_]:=-(1/2) Sum[(rtlref[k]/raref)^2 bk[x,k,n,time],{k,1,10}]; 

bigDref[x_,n_,time_]:=((1+Sqrt[es]+(4 p/c) (alf[x,n,time]+uEref[x,n,time])) (1+Sqrt[es]+(4p/c) 

(alf[x,n,time] + saref))-(4 p/c)^2 ((bet[x,n,time]+uFref[x,n,time]) bet[x,n,time]))^2+((4 p/c) 
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(bet[x,n,time]+uFref[x,n,time]) (1+Sqrt[es]+(4 p/c) (alf[x,n,time]+saref))+(4 p/c) bet[x,n,time] 

(1+Sqrt[es]+(4 p/c) (alf[x,n,time]+uEref[x,n,time])))^2; 

Eyy2ref[x_,n_,time_]:=(4(1+Sqrt[es]+(4 p/c) (alf[x,n,time]+saref))^2+(8 p 

bet[x,n,time]/c)^2)/bigDref[x,n,time]; 

Ezy2ref[x_,n_,time_]:=0.; 

Tyref[x_,n_,time_]:=Sqrt[es] (Eyy2ref[x,n,time]+Ezy2ref[x,n,time]); 

Ezz2ref[x_,n_,time_]:=(4(1+Sqrt[es]+(4 p/c) (alf[x,n,time]+uEref[x,n,time]))^2+(8 p/c)^2 

(bet[x,n,time]+uFref[x,n,time])^2)/bigDref[x,n,time]; 

Eyz2ref[x_,n_,time_]:=0.; 

Tzref[x_,n_,time_]:=Sqrt[es] (Ezz2ref[x,n,time]+Eyz2ref[x,n,time]); 

Ttotref[x_,n_,time_]:=(Tyref[x,n,time]+Tzref[x,n,time])/2; 

 

(*This section calculates the transmission spectrum of the device*) 

 

t1=Table[{(wm+i dw)/(2 p c),TtotDevice[(wm + i dw),ns,tau]},{i,0,2000}]; 

ListPlot[t1, PlotJoinedTrue, PlotRange{0,0.4},FrameTrue] 

(*This section calculates the transmission spectrum of the reference with t/a=1*) 

t2=Table[{(wm+i dw)/(2 p c),Ttotref[(wm + i dw),ns,tau]},{i,0,2000}]; 

ListPlot[t2, PlotJoinedTrue, PlotRange{0,1},FrameTrue] 

 

(*This section calculates the transmittance spectrum of the HEMT*) 

 

Ttot[x_,n_,time_]:=TtotDevice[x,n,time]/Ttotref[x,n,time]; 

t3=Table[{(wm+i dw)/(2 p c),Ttot[(wm + i dw),ns,tau]},{i,0,2000}]; 

ListPlot[t3, PlotJoinedTrue, PlotRange{0,1},FrameTrue] 

Absorp[x_,n_,time_]:=1-(TtotDevice[x,n,time]/Ttotref[x,n,time]); 

t4=Table[{(wm+i dw)/(2 p c),Absorp[(wm + i dw),ns,tau]},{i,0,300}]; 

ListPlot[t4, PlotJoinedTrue, PlotRange{0.6,1},FrameTrue] 

 

(*This section differentiates the transmittance spectrum of the HEMT*) 

 

DerTtot[x_,n_,time_]:=D[Ttot[x,n,time],x]; 

t5=Table[{(wm+i dw),DerTtot[x,ns,tau]/.x(wm+i dw)},{i,0,2000}]; 

ListPlot[t5, PlotJoinedTrue, PlotRange{-32*10^-14,5*10^-14},FrameTrue] 

t6=Table[{(wm+i dw),-1*DerTtot[x,ns,tau]/.x(wm+i dw)},{i,0,2000}]; 

ListPlot[t6, PlotJoinedTrue, PlotRange{-5*10^-14,32*10^-14},FrameTrue] 

 

SetDirectory["D:\\Most up to date folders\\Research\\HEMT Project\\HEMT-UCF\\HEMT 

Data\\PLS020 Series\\PLS023C (Sub-THz device-UCF)\\Calculated Plasmon Spectrum\\11-15-

2013 (Nov 2013 data)\\Relaxation Time Test"] 

Export["PLS023C-d38nm-a9um-tau0,18-Vgn0,4DivTransmission.txt",t1,"CSV"] 

Export["PLS023C-d38nm-a9um-tau0,18-Vgn0,4RefTransmission.txt",t2,"CSV"] 
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Export["Imag Device-tau0.25-ns1,51e12-mstar0,08-tOVERa 0,8-a0,5um-d38nm.txt",t3,"CSV"] 

Export["PLS023C-tau25-ns0.037e12(nsOVER21,5)-Absorption.txt",t4,"CSV"] 

Export["PLS023C-tau0,25-Vgn0,4-dToverdf.txt",t5,"CSV"] 

Export["PLS023C-ns1,04d20nmtau0,37nTransmittanceDerivativeVsAngFreq.txt",t6,"CSV"]*) 
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APPENDIX D: 

FITTING OF THE FM EXPERIMENTAL DATA USING MULTIPLE 

FUNCTIONS  
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Polynomial fit to the measured data in 40-60 GHz frequency range 

As seen in Fig. 35 theory lines in 40-60 GHz frequency range have a curvature that is not 

reflected by linear fits to the measured photoresponse.  Series of polynomial functions were 

fitted to the measured data to reproduce these curvatures.  Different 2
nd

 and 3
rd

-order 

polynomials were tried until a function in the form of ax
2
+bx gave the best fit to the data.  Figure 

48 compares such a fit to the theoretical curves.  Polynomial fits are scaled vertically to match 

theory lines with different scaling factors for each gate-bias.  These scaling factors are plotted in 

figure 49 as a function of Vg with red symbols while the black line represents a linear fit to these 

points.  Calculated scaling factors are increasing linearly with increasing negative gate voltage.  

2
nd

-order polynomial fits reproduce the curvature of theory lines; however, theory lines and 

experimental fits don’t match. 

 

Figure 48: Comparison of theoretical dA/df curves with polynomial fits to measured photoresponse for frequency 

range of 40-60 GHz. 

40 45 50 55 60

0.14

0.16

0.18

0.20

0.22

0.24

0.26
 

 

V
g
 = 0 V

V
g
 = -0.1 V

V
g
 = -0.2 Vd

A
/d

f 
(p

S
)

Frequency (GHz)

 Theory

 Experiment

(a)



91 

 

Figure 49: Scaling factor vs Vg data (symbols) and linear fit (line). 

 

Gaussian and Loretzian fits to the data and theory 

The absorption spectra of the device, A = 1-T, is calculated and shown in figure 28 (a).  

Absorption peaks in a spectrum can typically be approximated by a Gaussian or Lorentzian 

function.  Therefore, in the first attempt both of these functions were fitted to the absorption 

spectrum at zero gate-bias and in frequency range of 5-150 GHz.  Figure 50 presents the 

absorption spectrum along with Gaussian and Lorentzian fits with black symbols, red and blue 

curves respectively.  Both functions match theory up to 140 GHz where they start to diverge.  A 

slight slop mismatch, however, can be observed between absorption spectrum and fitted 

functions in this figure. 
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Figure 50: Theoretical absorption spectrum (Black symbols) along with Gaussian and Lorentzian fits (Red and Blue 

curves) in frequency range of 5-150 GHz. 

 

Since the measured photoresponse is related to dA/df by Eq. 9, derivatives of the theory 

line and fitted Gaussian function were calculated with respect to frequency and compared in 

figure 51.  Although Gaussian fit matches the absorption spectrum, the derivatives don’t match.  

This is possibly due to the observed slope mismatch in Fig 50.  The Lorentzian function also 

shows the same behavior when derivatives were compared. 
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Figure 51: Theoretical dA/df spectrum (Black symbols) along with derivative of Gaussian fit (Red curve) in 

frequency range of 5-150 GHz. 
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APPENDIX E: 

NOISE ANALYSIS AND REQUIRED LOCK-IN AMPLIFIER 

INTEGRATION TIME TO ELIMINATE A NOISE COMPONENT. 
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Lock-in amplifier is used to measure low electrical signal levels in a high noise 

environment.  One example to these environments is photodetectors.  In characterization of such 

detectors, the incident light is electrically modulated or mechanically chopped with a reference 

signal.  Then the detector output will be monitored and its Fourier component at the 

modulation/chopping frequency will be measured by Lock-in amplifier.  Stronger the 

component, larger will be the output of the amplifier.  During this process, the detector output 

will be averaged by the instrument over a preset time span called Lock-in Time Constant, τ. 

On the other hand, one of the most important figures of merit to characterize 

photodetectors is Noise-Equivalent-Power (NEP) for application purposes.  This value is defined 

as the radiation power that can generate signal-to-noise ratio (SNR) of 1 at 1 Hz output 

bandwidth and it’s calculated by NEP = P/(SNR×f 
1/2

) where P is the incident power on the 

detector and Δf is the bandwidth that is defined by 2/τ.  This appendix, presents the derivation of 

Δf = 2/τ. 

A sinusoidal electrical signal with the frequency of f0 can be defined by: 

       (     )  ( 47 ) 

Where t is the time and A1 is the amplitude of the signal.  If the system encounters a sinusoidal 

noise of bandwidth Δf centered around f0  (Δf<< f0), it’s mathematical relation can be written as: 

       [  (   
  

 
)  ]  ( 48 ) 
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During the measurements, the input of the Lock-in amplifier will be the superposition of signal 

and noise, S+N, which is in the form of 

         (     )       [  (   
  

 
)  ]    [(      

    
  

 
 )         ] ( 49 ) 

 

This is a Sin-wave with frequency of f0 and modulated amplitude.  Depending of the strength of 

the modulation term (   
    

  

 
 
) the input can look like wave packets with beat frequency of 

Δf/2.  Averaging over the defined time constant the noise component of the input will be 

removed and lock-in will record the desired signal.  This required time constant is calculated 

below. 

Figure 52 (top), shows the signal and noise of an electrical system over 100 mS, where the 

amplitude of signal and noise, A1 and A2, are 2 mV and 0.2 mV respectively.  Signal frequency is 

f0 = 100 Hz and noise bandwidth is Δf = 1 Hz.  In this figure the signal and noise are plotted with 

black and red color curves respectively.  Fig. 52 (down), presents the super position of two 

sinusoidal waves which is observed by Lock-in Amplifier over the course of t = 5 S. the 

amplitude of the signal is modulated from 1.8 to 2.2 mV with modulation frequency of  
  

 
 

       which is consistent with Equ. 49 above. 
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Figure 52: Sinusoidal signal and noise curves are presented with black and red colors respectively for a signal with 2 

mV amplitude and 100 Hz frequency and a noise with 0.2 mV amplitude and 1 Hz bandwidth (top) along with 

superposition of two (down)  

 

Figure 53 presents the calculated root mean square (RMS) value of the wave packet in Fig. 52 

(down) as the function of averaging time with blue curve.  The RMS value of the signal without 

0 50 100
-2

-1

0

1

2

 

S
ig

n
a

l 
(m

V
)

Time (mS)

-0.2

0.0

0.2

N
o

is
e

 (
m

V
)

0 1 2 3 4 5

-2

-1

0

1

2

 

 

S
ig

n
a
l 
+

 N
o
is

e
 (

m
V

)

Time (S)



98 

noise (Black curve in Fig. 52 top) is also calculated by averaging over tave = 3 S and is presented 

with the red dot.  Its value is 1.41x10
-6

 mV as marked in the figure. 

The RMS value of the superposed signal drops with increasing averaging time until it converges 

to the RMS value of the pure signal at tave = 2 S and it remains close to this value for longer 

averaging times.  Considering τ = 2 S to be the desired Time Constant for Lock-in measurements 

in this case, one might recognize that it’s equal to the  
 

    
 or consequently the bandwidth of the 

detector can be written as 

   
 

 
  ( 50) 

 

Figure 53: Plot of RMS value of the superposed signal as a function of averaging time.  The RMS value of the pure 

signal without noise is presented with the red dot in the figure.  this dot is calculated by averaging the signal for 3 

seconds. 
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APPENDIX F: 

CALCULATION OF THE DEVICE ABSORPTION AS A FUNCTION OF 

APPLIED Vg AT A FIX RADIATION FREQUENCY. 
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This program is written in Wolfram Mathematica to calculate the absorption of out grating-gated 

HEMTs as a function of applied Vg at a given constant free space radiation frequency. 

(*Fundamental constants, Gaussian units*) 

 

e=4.80325 10^-10 (*electron charge, Sqrt[dyne-cm^2]*); 

e1=1.6 10^-19 (*electron Charge, Coulomb*); 

c=2.99792 10^10 (*speed of light, cm/s*); 

m=9.10939 10^-28 (*electron mass, g*); 

p=N[Pi]; 

eps0=10^7/(4 p (c/100)^2)  (*permittivity of free space, C^2/N-m^2*); 

 

(*Device parameters*) 

 

d=380 10^-8 (*2DEG depth, cm*); 

tOVERa= 0.22(*ratio of grating window widths to grating period*); 

a=9 10^-4 (*grating period, cm*); 

t=tOVERa a (*width of grating windows, cm*); 

 

(*ns calculation*) 

 

nd=1.55 10^16 (*delta doping charge density, m-2*); 

b=0.7 (*Schottky barrier height*); 

x=0.68(*mole fraction of In in Subscript[In,x]Subscript[Ga,1-x]As*); 

Ec=0.344+0.487x(*conduction band offset for InGaAs/InAlAs (x>0.58)(eV) from 

Appl.Phys.Lett 60(6),Feb.1992 733-735*); 

epst=12.24(*InAlAs permittivity*); 

eps0=8.85 10^-12(*Vacuum permittivity in F/m*); 

dm=d/100(*2DEG depth, m*); 

ns[Vg_]:=((((epst*eps0)/(e1*dm))*(Vg-b+Ec)+nd)/(1 10^4)) (*Sheet charge density as a 

function of gate bias, cm-2*); 

t0=Table[{i,ns[i]},{i,-0.6,1,0.1}] 

 

(*Materials parameters*) 

 

mef=0.043m (*electron effective mass gram*); 

tau=6.5 10^-12 (*relaxation time, sec*); 

es=13.90(*In[.68]Ga[.32]As substrate permittivity*); 

eo=12.24(*In[.52]Al[.48]As top layer permittivity*); 

rh=1050 4 p eps0/100 (*2D resistivity in grating gaps, first # is ohms, rest converts to s/cm*); 
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rl=rh 0.1 4 p eps0/100 (*2D resistivity of grating bars, s/cm*); 

 

(*experimental parameters*) 

Vgm=-0.6(*minimum frequency, rad/s*); 

dVgm=0.001 (*frequency resolution rad/s*); 

freq1= 2 p 93 10^9 (*First measurment frequency, rad/s*);  

 

(*Derived quantities*) 

 

ra=(t/a) rh + (1-t/a) rl(*average 2D surface resisitivity s/cm*); 

sa=(t/a) (1/rh) + (1-t/a) (1/rl) (*average 2D surface conductivity, cm/s*); 

g=2 p/a (*grating wavevector, 1/cm*); 

 

(*Defined functions for device*) 

 

vt[Vg_,time_]:= ns[Vg] e^2 time/mef (*cm/s*); 

d1[x_,time_]:=(1-x^2 time^2)^2 + 4 x^2 time^2; 

alf[x_,Vg_,time_]:=vt[Vg,time] (1+x^2 time^2)/d1[x,time]; 

bet[x_,Vg_,time_]:=vt[Vg,time] x time (1+x^2 time^2)/d1[x,time]; 

d2[x_,k_,Vg_,time_]:=(es+eo Coth[k g d] - 4 p k g bet[x,Vg,time]/x)^2+(4 p k g 

alf[x,Vg,time]/x)^2; 

ak[x_,k_,Vg_,time_]:=eo^2 (1-Coth[g k d]^2) alf[x,Vg,time]/d2[x,k,Vg,time]; 

bk[x_,k_,Vg_,time_]:=((4 p g k/x) (1+eo Coth[g k d]) (alf[x,Vg,time]^2+bet[x,Vg,time]^2)-

(2(es+eo (1+es) Coth[g k d])+eo^2(1+Coth[g k d]^2)) bet[x,Vg,time]+(es+eo Coth[g k d]) 

(es+eo (1+es) Coth[g k d]+eo^2) (x/(4 p g k)))/d2[x,k,Vg,time]; 

rtl[k_]:=(2/(p k)) (rh-rl) Sin[p k t/a]; 

uE[x_,Vg_,time_]:=(1/ra)-(1/2) Sum[(rtl[k]/ra)^2 ak[x,k,Vg,time],{k,1,10}]; 

uF[x_,Vg_,time_]:=-(1/2) Sum[(rtl[k]/ra)^2 bk[x,k,Vg,time],{k,1,10}]; 

bigD[x_,Vg_,time_]:=((1+Sqrt[es]+(4 p/c) (alf[x,Vg,time]+uE[x,Vg,time])) (1+Sqrt[es]+(4p/c) 

(alf[x,Vg,time] + sa))-(4 p/c)^2 ((bet[x,Vg,time]+uF[x,Vg,time]) bet[x,Vg,time]))^2+((4 p/c) 

(bet[x,Vg,time]+uF[x,Vg,time]) (1+Sqrt[es]+(4 p/c) (alf[x,Vg,time]+sa))+(4 p/c) bet[x,Vg,time] 

(1+Sqrt[es]+(4 p/c) (alf[x,Vg,time]+uE[x,Vg,time])))^2; 

Eyy2[x_,Vg_,time_]:=(4(1+Sqrt[es]+(4 p/c) (alf[x,Vg,time]+sa))^2+(8 p 

bet[x,Vg,time]/c)^2)/bigD[x,Vg,time]; 

Ezy2[x_,Vg_,time_]:=0.; 

Ty[x_,Vg_,time_]:=Sqrt[es] (Eyy2[x,Vg,time]+Ezy2[x,Vg,time]); 

Ezz2[x_,Vg_,time_]:=(4(1+Sqrt[es]+(4 p/c) (alf[x,Vg,time]+uE[x,Vg,time]))^2+(8 p/c)^2 

(bet[x,Vg,time]+uF[x,Vg,time])^2)/bigD[x,Vg,time]; 

Eyz2[x_,Vg_,time_]:=0.; 

Tz[x_,Vg_,time_]:=Sqrt[es] (Ezz2[x,Vg,time]+Eyz2[x,Vg,time]); 

TtotDevice[x_,Vg_,time_]:=(Ty[x,Vg,time]+Tz[x,Vg,time])/2; 
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(*Reference sample Functions*) 

 

tOVERaref= 1; 

tref=tOVERaref a (*width of grating windows, cm*); 

 

(*Derived Functions for device*) 

 

raref=(tref/a) rh + (1-tref/a) rl(*average 2D surface resisitivity s/cm*); 

saref=(tref/a) (1/rh) + (1-tref/a) (1/rl) (*average 2D surface conductivity, cm/s*); 

rtlref[k_]:=(2/(p k)) (rh-rl) Sin[p k tref/a]; 

uEref[x_,Vg_,time_]:=(1/raref)-(1/2) Sum[(rtlref[k]/raref)^2 ak[x,k,Vg,time],{k,1,10}]; 

uFref[x_,Vg_,time_]:=-(1/2) Sum[(rtlref[k]/raref)^2 bk[x,k,Vg,time],{k,1,10}]; 

bigDref[x_,Vg_,time_]:=((1+Sqrt[es]+(4 p/c) (alf[x,Vg,time]+uEref[x,Vg,time])) 

(1+Sqrt[es]+(4p/c) (alf[x,Vg,time] + saref))-(4 p/c)^2 ((bet[x,Vg,time]+uFref[x,Vg,time]) 

bet[x,Vg,time]))^2+((4 p/c) (bet[x,Vg,time]+uFref[x,Vg,time]) (1+Sqrt[es]+(4 p/c) 

(alf[x,Vg,time]+saref))+(4 p/c) bet[x,Vg,time] (1+Sqrt[es]+(4 p/c) 

(alf[x,Vg,time]+uEref[x,Vg,time])))^2; 

Eyy2ref[x_,Vg_,time_]:=(4(1+Sqrt[es]+(4 p/c) (alf[x,Vg,time]+saref))^2+(8 p 

bet[x,Vg,time]/c)^2)/bigDref[x,Vg,time]; 

Ezy2ref[x_,Vg_,time_]:=0.; 

Tyref[x_,Vg_,time_]:=Sqrt[es] (Eyy2ref[x,Vg,time]+Ezy2ref[x,Vg,time]); 

Ezz2ref[x_,Vg_,time_]:=(4(1+Sqrt[es]+(4 p/c) (alf[x,Vg,time]+uEref[x,Vg,time]))^2+(8 p/c)^2 

(bet[x,Vg,time]+uFref[x,Vg,time])^2)/bigDref[x,Vg,time]; 

Eyz2ref[x_,Vg_,time_]:=0.; 

Tzref[x_,Vg_,time_]:=Sqrt[es] (Ezz2ref[x,Vg,time]+Eyz2ref[x,Vg,time]); 

Ttotref[x_,Vg_,time_]:=(Tyref[x,Vg,time]+Tzref[x,Vg,time])/2; 

 

Absorp[x_,Vg_,time_]:=1-(TtotDevice[x,Vg,time]/Ttotref[x,Vg,time]); 

t4=Table[{i,Absorp[freq1,i,tau]},{i,-0.5,0.85,0.001}]; 

ListPlot[t4, PlotJoinedTrue, PlotRange{0.65,0.85},FrameTrue] 

 

SetDirectory["D:\\Most up to date folders\\Research\\HEMT Project\\HEMT-UCF\\HEMT 

Data\\PLS020 Series\\PLS023C (Sub-THz device-UCF)\\Calculated Plasmon Spectrum\\11-15-

2013 (Nov 2013 data)\\Gate bias dependence spectra at fix frequency"] 

Export["93 Ghz freq-tau6,5-nsOVER21,5-a9u-A.txt",t4,"CSV"] 
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APPENDIX G: 

ANALYSIS OF AM EXPERIMENT RESULTS WITH MODIFIED ns AND τ. 
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Sheet charge density of a HEMT can be calculated from Eq. 5.  Table 7 presents the sheet charge 

density values for the sub-THz device at different gate-biases with Vth = -0.85 V, d = 38 nm, and 

εt = 12.24.  These are the calculated values from the measured I-V curves at the time of AM 

experiment. 

Table 7: Sheet charge density values as a function of applied Vg 

 

Vg (V) ns (×10
12

 cm
-2

) 

0.8 2.93 

0.6 2.57 

0.4 2.22 

0.2 1.86 

0 1.52 

-0.2 1.15 

-0.4 0.793 

 

Figure 54 presents the measured photoresponse of the unbiased device, VSD = 0 V.  

Absorption of the device at two constant frequencies of 80 and 101 GHz is calculated for 

different Vg values and compared with the measurements.  Sheet charge density values used in 

calculations are the values in table 7 divided by a factor of 20.5, therefore, for these values we 

have 

   (  )     (  )
      [  (    )  

    

  
  ]       ( 51 ) 
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Theory curves for two relaxation times of 6.5 and 30 ps are compared with measurements in Fig. 

54 (top) and (Bottom), respectively. 

 

Figure 54: Measured photoresponse of the unbiased device compared with calculated absorption at different Vg 

values. 

 

Absorption spectra of the device are also calculated and presented in figures 55 and 56 

for relaxation times of 30 and 6.5 ps, respectively.  The sheet charge densities used in these 

calculations are similar to the ones used in calculation of theory curves in Fig. 54.  The two 

measurement frequencies of 82 and 101 GHz are also marked with two black and red dashed 

lines, respectively. 
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Figure 55: Calculated absorption spectra of the sub-THz device with an imaginary relaxation time of 30 ps. 

 

 

Figure 56: Calculated absorption spectra of the sub-THz device with an imaginary relaxation time of 6.5 ps.  Sheet 

charge density values used are the values of table 7 divided by 20.5. 
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In Fig. 54, the two measured photoresponse peaks to 101 GHz radiation are separated by ΔVg ~ 

0.35 V 101.  Calculated absorption curve, however, predicts a larger of ΔVg ~ 0.6 V.  This results 

in low Vg absorption peak to position to the left of the single peak at 82 GHz absorption curve, in 

contrast with the measured photoresponse.  The ΔVg between the two peaks in the theoretical 101 

GHz absorption curve is derived as follows: 

The plasmon dispersion curve in the sub-THz device is: 

a
n

m

dVne

t

gs

n



 2

)('

0

*

2

  ( 52 ) 

In Fig. 52, 101 GHz absorption curve shows a double peak.  Comparing with Fig. 53, it is 

seen that the two peaks at low and high Vg values are representations of 3
rd

 and 2
nd

 order 

harmonics, respectively.  At this excitation frequency, therefore, we will have 

      ( 53 ) 

Substituting Eq. 52 into Eq. 53, we will get 

    
  

 

 
      ( 54 ) 

Also, calculating for Δns’ = ns,2’ – ns,3’from Eq. 51, we will have 

   
      

      
  

     

       
(         ) ( 55 ) 

Substituting Eq. 54 in Eq. 55 gives 
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          (
       

     
⁄ )      (

      
     

⁄ ) ( 56 ) 

From Eq. 56, it is obvious that the Vg separation between the 3
rd

 and 2
nd

 order harmonics depends 

on the fixed parameters of the device’s layer structure, namely ε0, d, and the sheet charge density 

at the Vg where the peak of the 3
rd

 harmonic is positioned. All these parameters are independent 

of the τ and ns’ values used in the calculations of the theory curves, and therefore, the calculated 

ΔVg will remain the same regardless of the chosen values of ns’ and τ. 

The line-shape and FWHM of the peaks in theory curves with τ = 6.5 ps have a better agreement 

with the experiment; however, they cannot explain the flat photoresponse to 82 GHz radiation at 

Vg > 0.2 V.  A drastic increase in τ is required to be able to explain the flat photoresponse as 

evidenced by the theory curves with τ = 30 ps.  In this case, however, the line-shapes of the 

theory curves don’t agree with the experiment. 
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APPENDIX H: LIST OF PUBLICATIONS 
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Journal Publications 

1) N. Nader Esfahani, R. E. Peale, W. R. Buchwald, X. Qiao, J. R. Hendrickson, and  J. W. 

Cleary, “Nonlinear voltage-tunable photoresponse of InGaAs/InP HEMTs to sub-THz 

radiation due to excitation of 2D plasmons.”, Submitted, Appl. Phys, Lett, (2014) 

2) N. Nader Esfahani, R. E. Peale, W. R. Buchwald, C. J. Fredricksen, J. R. Hendrickson, 

and  J. W. Cleary, “Millimeter-wave photoresponse due to excitation of two-dimensional 

plasmons in InGaAs/InP high-electron-mobility transistors.” Jour. Appl. Phys. 114, 

033105 (2013) 

Conference Proceedings 

1) N. Nader Esfahani, R. E. Peale, W. R. Buchwald, J. R. Hendrickson, and  J. W. Cleary, 

“Tunable excitation of two-dimensional plasmon modes in InGaAs/InP HEMT devices 

for terahertz detection” Proc. Of SPIE 8993-89930F (2013) 

2) N. Nader Esfahani, R. E. Peale, W. R. Buchwald, J. R. Hendrickson, and J. W. Cleary, 

“Millimeter and terahertz detectors based on plasmon excitation in InGaAs/InP HEMT 

devices,” ,” Proc. SPIE 8624-86240Q (2013) 

3) N. Nader Esfahani, R. E. Peale, W. R. Buchwald, J. R. Hendrickson, and J. W. Cleary, 

“First observation of a plasmon-mediated tunable photoresponse in a grating-gated 

InGaAs/InP HEMT for millimeter-wave detection,” Proc. SPIE 8512-85120Y (2012) 

4) N. Nader Esfahani, Justin W. Cleary, Robert E. Peale, Walter R. Buchwald, Christopher 

J. Fredricksen, Joshua Hendrickson, Michael S. Lodge, Ben D. Dawson, M. Ishigami, 
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“InP- and Graphene-based grating-gated transistors for tunable THz and mm-wave 

detection”, Proc. of SPIE 8373-837327, (2012) (Invited) 

5) N. Nader Esfahani, R. E. Peale, Christopher J. Fredricksen, Justin W. Cleary, Joshua 

Hendrickson, Walter R. Buchwald, Ben D. Dawson, and M. Ishigami, “Plasmonic 

absorption in grating-coupled InP HEMT and Graphene sheet for tunable THz detection”, 

Proc. of SPIE 8261-82610E, (2012)  

6) R. E. Peale, N. Nader Esfahani, C. J. Fredricksen, G. Medhi, J. Cleary, J Hendrickson, W. 

Buchwald, H. Saxena, O. Edwards, M. Lodge, B. Dawson, M. Ishigami, “InP- and 

Graphene-based grating-gated transistors for tunable THz and mm-wave detection”, Proc. 

of SPIE 8164-816408, (2011) (Invited) 

6) N. Nader Esfahani, C. J. Fredrickson, G. Medhi, R. E. Peale, J. W. Cleary, W. R. 

Buchwald, H. Saxena, and O. J Edwards, “Plasmon resonance response to millimeter-

waves of grating-gated InGaAs/InP HEMT,” Proc. of SPIE 8023-80230R (2011) 
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