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ABSTRACT

We propose a vertical spiral phase corrector for ring cavity surface emitting (RCSE) quantum cascade lasers (QCLs),
which will allow achievement of near-Gaussian generated beam profile. A problem with RCSE QCLs is their donut-
shaped intensity distribution with a node along the symmetry axis of the ring. This arises because of the © phase
difference for the azimuthally polarized rays emitted from opposite elements of the ring. We theoretically demonstrate
that near-Gaussian beams can be achieved with a spiral phase shifter that adds one wavelength of additional optical path
in going once around the ring. Various three dimensional lithographic techniques for fabricating such a phase shifter,
including a grey scale mask, electron-beam resist dose dependency, and two photon induced photopolymerization, are
considered. Ring cavity QCLs with the proposed phase corrector will feature better beam quality, larger power, and
better resistance to radiative damage in comparison with traditional edge-emitting QCLs.

Keywords: Ring cavity, quantum cascade laser, beam quality, surface emission

1. INTRODUCTION

The quantum cascade laser (QCL) is a unipolar device in which individual electrons undergo multiple photon emissions
via transitions between states in a periodic sequence of quantum wells."” The QCL emission wavelength is determined
by quantum well design. Most commercial QCLs emit from their end facets with strongly diverging beams due to the
small exit apertures. Experimental ring-cavity surface emitting QCLs achieve better beam quality due to larger and
symmetric exit apertures. Output coupling is usually achieved via a 2™-order distributed-feedback grating. Emission
from opposite sides of the ring is 180 degrees out of phase, causing destructive interference along the axis of symmetry,
resulting in a donut-shaped intensity profile.

Additional azimuthal oscillations in the intensity profile® are caused by beating between the grating period and emission
wavelength. The solution is already known, namely to match the grating to the wavelength. This usually requires
fabricating many devices with different grating periods, and choosing the one with the fewest azimuthal hot spots.

In this paper, we propose a means of eliminating the most significant of the beam profile problems for RCSE QCL,
namely the central node. Our approach shifts the phase of the emission by use of a vertical spiral wedge of dielectric.
Such a wedge may be fabricated by a number of different three dimensional lithography methods.

2. THEORETICAL CONSIDERATIONS

Figure 1 (left) presents a schematic of the coordinate system and geometrical parameters. Laser radiation is emitted in

the z direction from the top facet of the ring. Huygens principle gives for any field component u, at the observation
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where £ is the wavevector magnitude, R is the distance from area element df to P, and u is the field value at df. The
integral is performed over the emitting surface, i.e. the top surface of the ring, and df;, is the projection of the surface area
element df on the direction of the ray from the light source within the ring to df. The area element df is already in the
same direction as the assumed direction vector n (z direction) of the rays from the source of emission within the ring to
the exit aperture on the top surface of the ring, so that df, = df = wad¢@, where w is the width of the ring waveguide.
Without loss of generality, given the azimuthal symmetry, we may align the coordinates so that the x-axis is directly
under the field point P, so that only the polar angle (®,) and field point radius vector (Ry) are needed to specify the
position of P. The polar angle for the position of each area element is 7/2, so that only the azimuthal angle ¢ and ring
radius a are necessary to specify an area element’s position. With these coordinates, the vector from area element to
field point P is R = Ry - a = {R,sin®), - acos g, -asing, R,cosB,}.

Constructive
Interference

Figure 1. (left) Geometry for calculation of ring-cavity emission profile. Field point P lies above the x axis. (right) Proposed
spiral wedge phase shifter giving constructive interference along the symmetry axis for beams from opposite sides of the
ring.

Since a << R,, R = \/(Ro2 +a* +2Rya sin®, cosg) ® Ry—asin@,cosg. Since the range of 6, is small, keeping the angle
dependent terms in the denominator of Eq. (1) gives only slow variations with polar angle, so there we take R = Ry. On
the other hand the factor 4« in the argument of the complex exponential may be large, giving rise to a large phase that
oscillates rapidly with small changes in polar angle, so there we must keep the second term in the expansion of R. Then,
Eq. (1) becomes

wake™ c2x —ikasin®, cos ¢
u,= —J. ue *dg @
2inR, <0

The azimuthally-polarized'® electric field of the emitted wave at the surface of the ring is E = E,{-sing, cos¢g, 0}. We
may then write

wake™™ E J-

27 g i
' o kasin®, cos¢et¢d¢ 3)
2inR,

E, —IiE, = .
Ep, calculates to zero because contributions from members of each pair of opposite area elements equally distant from P

have opposite sign, and their contributions cancel. However, opposite area elements that have equal but opposite y
components are at different distances from P and do not completely cancel. The Bessel function in integral form is''
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27 . .
J 7) = ezzcos¢em¢d 4
=7 ¢ @
so that
wake™ E .
oy = —R—”Jl(ka sin®,) (5)

o
where we have used the property that J; is an odd function of its argument.

To eliminate the central node, a spiraling wedge is added to the output facet of the ring, such that the phase of the
emitted light is shifted by 27 in going once around the ring. Such a vertical spiral wedge is depicted schematically in
Fig. 1 (right). This shift is introduced as an additional angle dependence on the phase term in Eq. (1)

kR, o A
u, = W;lij IOZ ue—zkasm o, cos¢+1¢d¢ (6)
Then
) wake™* E, .
E, —iE, = —TJz(ka sin®,) (7a)
] wake™® E, .
E, +iE, = TJO (kasin®,) (7b)

where we have made use of the evenness of the functions J; and J, with respect to their arguments. Equations (7a) and

(7b) give
wake"™ E . .
Epy :TRO[JO(kaSln@o)_JZ(kaSHl@o)] (3a)
3 wake"™ E, fasi rasi
pr——z—Ro[Jo( aSln®0)+J2( aS1n®0)] (Sb)

The intensity obtained by summing the absolute squares of the fields in equations (5) and (8) are plotted as a function of
polar angle @), in figure 2. Results with the wedge show a central peak whereas those without have the usual a central
node.’
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Figure 2. Intensity distribution as a function of polar angle @, with and without the spiral wedge, as indicated.

3. EXPERIMENT

The considered spiral wedge may be fabricated by a three dimensional lithography such as gray scale mask,'*" two-
photon lithography, or electron-beam lithography. We used the latter in this initial study. A JEOL scanning electron
microscope equipped with Nanometer Pattern Generation System (NPGS) patterned a design in discretized areas using
different electron doses. Then we timed the development according to the dependence of development rate on dose. The
result is presented in figure 3 C. We then transferred the spiral wedge pattern into the silicon substrate by reactive ion
etching (Trion MiniLock II). By controlling the gas chemistry, we control the removal rate of the polymer mask, and
thus etch the wedge into the substrate.

Specific key process parameters of the entire process are:
1) Spin on 495 PMMA A15 on virgin grade Silicon wafer @ 2000 RPM and bake solvent
2) Spiral dose exposure using NPGS
3) Timed 30s development in 1:3 methyl isobutyl ketone (MIBK) : isopropyl alcohol (IPA)
4) ICP RIE RF plasma — 300 W ICP, 200 W RIE, 40 sccm SFg, 5 sccm O,, 10 minutes
5) RIE RF plasma— 100 W RIE, 50 sccm O,, 2 minutes

Figure 3A presents an optical microscope image of the wedge, and Figure 3B presents the line profile across the wedge.
The depth difference between opposite sides is ~350 nm so that the total height of the wedge that has been etched into
silicon is d = 700 nm. The phase difference for two waves from opposite sides of the ring with an ideal wedge is « (n-1)
d/h. We consider the height for a wedge etched into the InP substrate of a substrate-emitting RCSE QCL. For the
desired phase difference of , an index of 3.1 for InP, and a wavelength of 5 um, the desired wedge height would be 2.4
pm. With optimization of the differential etch rate for mask and wedge material, the desired wedge seems feasible.
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Figure 3. (A) Optical image of a 300um spiral ring fabricated into silicon. The dashed line indicates the profilometer track.
(B) Height profile across along the spiral diameter. (C) Angled Scanning Electron Microscope image of the spiral written in

e-beam resist.
Electron beam lithography is slow and inappropriate for large area patterning. For wafer scale fabrication, a grey scale
photolithographic mask is more desirable. Such may be prepared using high energy beam sensitive glass (HEBS). The
HEBS material’s transmittance is a function of an electron beam exposure time. The HEBS mask with the ring patterns
variable opacity may be used repeatedly in standard photolithography. Wedges in photoresist are then created according
to the dependence of development rate on UV exposure. Resist wedges may then serve as etch masks'”.

We may also fabricate the spiral by use of a direct laser writer (DLW), i.e. a two photon lithographic system. A spiral
may be formed by direct exposure and a single dissolution'*. An advantage over electron beam lithography is the
possibility of much thicker polymers to allow for deeper spirals. A disadvantage is speed and practically limited areas of

exposure.

4. SUMMARY

This paper described a means of eliminating the central node in the beam from a ring-cavity surface emitting quantum
cascade laser. Proposed is a wedge of dielectric fabricated on the emitting surface of the ring, so that a phase shift of
2mis added in going once around the ring. Initial experiments in 3D lithography demonstrate the feasibility of

fabricating the required wedge.
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