David J. Hilton, Ph. D

Associate Professor
Department of Physics
The University of Alabama at Birmingham

Two-dimensional materials have attracted significant interest recently as
candidates to replace silicon in microelectronics, with a recent focus on many novel
monolayer systems like transition metal dichalcogenides (e.g. MoS: and related
compounds). Compared to more traditional quantum confined systems, however, many
of the optical and electronic properties of these materials that have been measured have
been strongly influenced by disorder, given the short period of time that these materials
have been studied and the relatively unsophisticated methods that are used to produce
monolayer materials. The modulation doped gallium arsenide two-dimensional
electron gas, in contrast, has seen extensive study and the growth of high quality samples
with mobilities exceeding 10° cm? V- s, which provides a model system to study the
electronic and optical properties of two-dimensional materials in the “clean”
limit. Traditional measurement of these materials have been electrical transport
measurements [e.g. Phys. Rev. Lett. 48, 1559 (1982)], while the study of these materials on
subpicosecond time-scales is relatively recent [e.g. Phys. Rev. B 93, 155437 (2016).]. These
ultrafast spectroscopic techniques are a frequently employed and powerful technique
that can be used to unravel complex and often competing processes in condensed matter
systems on a femtosecond time scale. High Magnetic field spectroscopy is a particularly
useful optical tool for unraveling complex interactions in these systems, which are a
particularly rich source of novel materials physics due to the relative absence of disorder
in2DEG’s. In this talk, I will discuss our work using terahertz time-domain spectroscopy
to study Landau level populations and coherences in high mobility two-dimensional
semiconducting systems and our extensions of these techniques to higher magnetic field
spectroscopy. We model our results using the Optical Bloch Equations to determine the
dephasing lifetime as a function of temperature and explain our low temperature results
using ionized impurity and bound interface charge scattering in the conducting layer. In
the second part of my talk, I will discuss our recent work to study these materials in high
magnetic field using the 25 Tesla Split-Florida Helix magnet at the National High
Magnetic Field Lab. Our results reveal a complex interplay between conventional
(electron transport) and complex (many-body) electronic interaction on an extremely fast
time scale.
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