
Objective: This simulation study investigated factors 
influencing sustained performance and fatigue during opera-
tion of multiple Unmanned Aerial Systems (UAS). The study 
tested effects of time-on-task and automation reliability on 
accuracy in surveillance tasks and dependence on automation. 
It also investigated the role of trait and state individual differ-
ence factors.

Background: Warm’s resource model of vigilance has 
been highly influential in human factors, but further tests of its 
applicability to complex, real-world tasks requiring sustained 
attention are necessary. Multi-UAS operation differs from stan-
dard vigilance paradigms in that the operator must switch atten-
tion between multiple subtasks, with support from automation.

Method: 131 participants performed surveillance tasks 
requiring signal discrimination and symbol counting with a 
multi-UAS simulation configured to impose low cognitive 
demands, for 2 hr. Automation reliability was manipulated 
between-groups. Five Factor Model personality traits were 
measured prior to performance. Subjective states were 
assessed with the Dundee Stress State Questionnaire.

Results: Performance accuracy on the more demanding 
surveillance task showed a vigilance decrement, especially 
when automation reliability was low. Dependence on auto-
mation on this task declined over time. State but not trait 
factors predicted performance. High distress was associated 
with poorer performance in more demanding task conditions.

Conclusions: Vigilance decrement may be an operational 
issue for multi-UAS surveillance missions. Warm’s resource 
theory may require modification to incorporate changes in 
information processing and task strategy associated with mul-
titasking in low-workload, fatiguing environments.

Application: Interface design and operator evaluation for 
multi-UAS operations should address issues including motiva-
tion, stress, and sustaining attention to automation.

Keywords: vigilance, multitasking, automation, fatigue, stress, 
Unmanned Aerial Systems

Joel Warm’s priceless legacy to human factors 
includes the resource theory of vigilance 
(Warm, Dember, & Hancock, 1996), acclaimed 
as the leading account of sustained attention 
(e.g., Proctor & Vu, 2010). It also includes 
more than 50 years of meticulous experimental 
work on vigilance based on his expertise in 
psychophysics, experimental design, workload 
assessment, neuroergonomics, and human fac-
tors engineering (Warm & Dember, 1998; 
Warm & Jerison, 1984; Warm, Matthews, & 
Finomore, 2008; Warm, Parasuraman, & 
Matthews, 2008). The present article addresses 
two of the many facets of vigilance that Warm’s 
work addressed: vigilance decrement in com-
plex, real-world operational settings and the 
role of individual differences. We report on a 
study that examined sustained attention in the 
context of a simulation of operating multiple 
Unmanned Aerial Systems (UAS) supported by 
automation, and the influence of trait and state 
individual difference factors on performance, 
workload, and stress.

Attentional Resources, Vigilance, 
and UAS Operation

The resource theory of vigilance combines 
three principal propositions. First, contrary to 
earlier conceptions of vigilance as mentally 
undemanding, sustaining focused attention often 
imposes high cognitive demands and workload 
(Warm et  al., 1996). Second, sustained alloca-
tion of resources to attentional processes leads 
to depletion of the resource pool, an assumption 
supported by Warm’s groundbreaking work on 
hemodynamic markers for vigilance (Warm, 
Tripp, Matthews, & Helton, 2012). Third, 
high-workload vigilance tasks are commonly 
resource limited (Norman & Bobrow, 1975), 

799468 HFSXXX10.1177/0018720818799468Human FactorsVigilance, Automation, and UAS Operationresearch-article2018

Address correspondence to Gerald Matthews, Institute 
for Simulation & Training, University of Central Florida, 
3100 Technology Pkwy., Orlando, FL 32826, USA; e-mail: 
gmatthews@ist.ucf.edu.

Vigilance and Automation Dependence in Operation  
of Multiple Unmanned Aerial Systems (UAS):  
A Simulation Study

Ryan W. Wohleber, Gerald Matthews, Jinchao Lin, James L. Szalma, University 
of Central Florida, Orlando, USA, Gloria L. Calhoun, Gregory J. Funke, Air Force 
Research Laboratory, Wright-Patterson AFB, OH, USA, C.-Y. Peter Chiu, University 
of Cincinnati, USA, and Heath A. Ruff, Infoscitex, Dayton, OH, USA

HUMAN FACTORS
Vol. 61, No. 3, May 2019, pp. 488–505
DOI: 10.1177/0018720818799468
Article reuse guidelines: sagepub.com/journals-permissions
Copyright © 2018, Human Factors and Ergonomics Society.

Special Issue In Remembrance of Joel Warm

mailto:gmatthews@ist.ucf.edu
https://us.sagepub.com/en-us/journals-permissions
https://doi.org/10.1177/0018720818799468
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0018720818799468&domain=pdf&date_stamp=2018-09-28


Vigilance, Automation, and UAS Operation	 489

so that resource depletion is directly expressed 
as vigilance decrement. A meta-analysis (See, 
Howe, Warm, & Dember, 1995) showing that 
perceptual sensitivity declines increase with 
task difficulty substantiates this proposition.

Theoretical accounts of vigilance including 
resource theory and its competitors continue to 
be debated (e.g., Fraulini, Hancock, Neigel, 
Claypoole, & Szalma, 2017; Thomson, Besner, 
& Smilek, 2016). The aim of the present study 
was to test the applicability of the resource 
model to a complex task environment (multi-
UAS control). The generalizability of results 
from standard laboratory paradigms for vigi-
lance to real-world tasks is a longstanding issue. 
Skepticism over generalizability has been fueled 
by observations that personnel tasked with mon-
itoring often experience breaks from the task 
that may help to reduce vigilance decrement 
(Casner & Schooler, 2015; Mackie, 1987). Han-
cock (2013) attributes the decrement to design 
features of typical laboratory displays that elicit 
boredom and loss of personal agency, features 
not necessarily present in operational environ-
ments. A contrasting perspective advanced by 
Warm and his colleagues (e.g., Warm et  al., 
1996) is that regardless of the quality of the dis-
play design, automation of systems increasingly 
shifts the operator’s role from active control to 
supervisory monitoring, enhancing the likeli-
hood of vigilance decrement.

Military UAS missions are often monoto-
nous, so that operators become fatigued, bored, 
distractible, and potentially vulnerable to loss of 
vigilance (Cummings, Mastracchio, Thornburg, 
& Mkrtchyan, 2013; Mouloua, Gilson, & Han-
cock, 2003; Tvaryanas et  al., 2006). Indeed, a 
UAS study conducted by Warm and colleagues 
(Gunn et  al., 2005) showed a vigilance decre-
ment in detection of threat warnings presented in 
the context of a 32.4 min simulated target acqui-
sition task.

However, it is unclear whether vigilance dec-
rement in detection tasks would occur with more 
complex task configurations, in which the UAS 
operator timeshares monitoring of displays with 
performing additional subtasks (Ouma, Chap-
pelle, & Salinas, 2011). Real-world monitoring 
tasks often require multiple, heterogeneous 
forms of processing (Donald, 2008). If the 

operator frequently switches between subtasks 
requiring different multiple resources, depleted 
resources may be able to recover; for example, a 
visual resource might recover during periods 
when the operator is performing an auditory 
subtask. In addition, task complexity may coun-
ter operator passivity and disengagement. In a 
follow-up to Gunn et al. (2005), Parsons, Warm, 
Nelson, Matthews, and Riley (2007) showed 
that vigilance decrement was eliminated in a 
detection-action scenario, in which target detec-
tion allowed the participant to use the mouse to 
destroy the threat to the UAS. Needs for strate-
gic management of multiple task elements may 
increase engagement and counter the decrement.

Vigilance may also be influenced by the 
increasing automation of operator functions in 
the UAS. The current research focuses on auto-
mation to support multi-aircraft control (MAC), 
where a single operator controls multiple vehi-
cles (Calhoun, Goodrich, Dougherty, & Adams, 
2016). Automation is essential to manage mul-
tiple sources of demand including information 
retrieval, flight control, navigation, mission and 
payload management, and communication. 
Implications for vigilance are equivocal. On the 
one hand, automation allows the operator to 
manage multiple subtasks that would otherwise 
be allocated to different personnel, for example, 
sensor operation and piloting. The consequent 
increase in subtask diversity may reduce 
resource depletion and hence mitigate vigilance 
decrement. On the other hand, automation that 
relegates the operator to a passive monitoring role 
could exacerbate vigilance decrement (Warm, 
Parasuraman, & Matthews, 2008). Design factors 
such as the reliability and level of automation 
(LOA) also moderate the impact of the automa-
tion on attention (Parasuraman & Manzey, 2010; 
Parasuraman & Wickens, 2008). For example, 
higher LOAs can encourage operators to dele-
gate too much responsibility to the automation 
for target detection (Calhoun, Ruff, Draper, & 
Wright, 2011).

The introduction of automation also raises 
the question of how dependence on automation 
may change as the operator becomes less vigi-
lant. Successful MAC requires that operators 
calibrate dependence on automation appropri-
ately, avoiding the twin hazards of under- and 
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overdependence (Parasuraman & Riley, 1997). 
Parasuraman and Manzey’s (2010) theory of 
automation use provides a resource theory per-
spective. It links two forms of overdependence on 
automation—automation complacency and auto-
mation bias—to attentional processes. It empha-
sizes attentional overload as a source of automa-
tion misuse, especially with more reliable, higher 
LOA systems. Thus, automation that successfully 
mitigates workload should minimize overdepen-
dence and counter vigilance decrements.

A contrasting view comes from studies of 
effort-regulation in fatigue states (Hockey, 1997; 
Sauer, Wastell, Robert, Hockey, & Earle, 2003). 
Fatigued operators reduce performance stan-
dards as an effort-conservation strategy, poten-
tially leading to increasing dependence on auto-
mation, coupled with loss of vigilance. Similarly, 
Desmond and Hancock (2001) describe a passive 
fatigue state induced by boredom and underload 
in which operators tend to disengage from the 
task. In simulated driving studies, automated 
driving impairs alertness following manual take-
over (Matthews, Neubauer, Saxby, Wohleber, & 
Lin, 2018; Saxby, Matthews, Warm, Hitchcock, 
& Neubauer, 2013), and fatigued drivers are 
more likely to initiate automation (Neubauer, 
Matthews, Langheim, & Saxby, 2012).

Individual Differences
Warm’s research also investigated the roles 

of trait and state individual-difference factors 
in vigilance. A review (Finomore, Matthews, 
Shaw, & Warm, 2009) concluded that measures 
of temporary stress states were stronger predic-
tors of vigilance than were stable personality 
traits, such as the Five Factor Model (FFM; 
McCrae, 2009). Extraversion is modestly nega-
tively associated with vigilance in some studies 
(Finomore et  al., 2009), whereas neuroticism 
and low conscientiousness may be associated 
with stress response to vigilance, though not 
with performance (Shaw et al., 2010).

A key state dimension is task engagement, 
which contrasts energy, motivation, and alert-
ness with fatigue symptoms such as tiredness, 
apathy, and distractibility (Matthews et  al., 
2002). This dimension correlates with percep-
tual sensitivity and the hemodynamic response 
to task demands, and may index resource 

availability (Matthews et  al., 2010; Matthews, 
Warm, & Smith, 2017). Thus, to the extent that 
vigilance decrement occurs in UAS operation, 
operators who can maintain task engagement 
should perform better. If fatigue leads to 
increased automation-dependence (Neubauer 
et  al., 2012), low engagement might also be 
associated with dependence.

Individual-difference factors might play a 
somewhat different role in UAS operation than 
they do in conventional laboratory vigilance, 
although evidence is limited. Szalma and Taylor 
(2011) found that FFM conscientiousness and 
neuroticism were associated with performance 
accuracy in a simulated unmanned ground vehi-
cle (UGV) scenario, but relationships varied 
across task conditions. In Szalma and Taylor’s 
study, neuroticism was the only trait to predict 
operator agreement with automation. By con-
trast, Kidwell, Calhoun, Ruff, and Parasuraman 
(2012) found that extraversion was associated 
with usage of adaptable automation. In addition, 
the optimal operator state for multitasking may 
differ from the high engagement state ideal for 
conventional vigilance. Distress was a better pre-
dictor than task engagement of attention in stud-
ies of simulated UGV (Matthews, Reinerman-
Jones, Abich, & Kustubayeva, 2017) and UAS 
performance (Lin et al., 2018). In multitasking, 
distress may disrupt executive control of multi-
ple processing components (Matthews & Camp-
bell, 2010; Matthews, Reinerman-Jones, et  al., 
2017).

Aims and Hypotheses
The current study utilized the ALOA (Adap-

tive Levels of Autonomy) multi-UAS research 
simulation (see Calhoun et  al., 2011). ALOA 
supports multiple subtasks including routing, 
surveillance, health checks, and communica-
tion, with automation at different LOAs. In a 
previous study (Lin et al., 2018) we configured 
the platform to be highly cognitively demand-
ing and showed that overload tended to impair 
accuracy on surveillance tasks, increase neglect 
of these tasks, and encourage disuse of auto-
mation. The surveillance tasks were designed 
to correspond to sensory and cognitive vigi-
lance tasks, respectively (see See et al., 1995). 
A Weapon Release (WR) task required the 
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participant to view a still image and distinguish 
friendly versus enemy tanks that differed subtly 
in appearance. The use of perceptually confus-
able stimuli builds on Warm’s demonstrations 
that perceptually demanding vigilance tasks 
may elicit rapid performance decrement (e.g., 
Temple et  al., 2000). By contrast, the Image 
Analysis (IA) task required the participant to 
count green diamonds overlaying a map display, 
ignoring other geometric shapes. Stimuli were 
easily discriminated, so demands were cognitive 
rather than sensory in nature; typically, cogni-
tive vigilance tasks are less prone to vigilance 
decrement than are sensory tasks (See et  al., 
1995). Lin et al. (2018) confirmed that accuracy 
was significantly lower for WR than for IA.

In the present study, the simulation was con-
figured to impose low cognitive demands, so as 
to encourage passive fatigue. A manipulation of 
automation reliability was included. Trial dura-
tion was extended to 2 hr to provide ample time 
for vigilance decrement to emerge. Aims and 
hypotheses were formulated to test generaliz-
ability of resource theory predictions to the 
MAC context, as follows.

Detection accuracy, stress, and workload 
during UAS operation. High-demand vigilance 
tasks have several signature characteristics 
(Warm, Parasuraman, & Matthews, 2008). 
These include high workload, increased dis-
tress, and lower task engagement following per-
formance. We hypothesized that these subjective 
responses would be observed for the current 
task (H1). In addition, signal detection declines 
over time (vigilance decrement), especially as 
attentional demands increase. We hypothesized 
that vigilance decrement would be greater for 
the more difficult WR task and when automa-
tion was less reliable, placing more demands on 
attention (H2).

Temporal change in automation dependence. 
There is little previous research on changes in 
dependence on automation during vigilant 
monitoring, and so this aspect of the research 
was exploratory. The Parasuraman and Manzey 
(2010) theory predicts greater dependence with 
more reliable automation (H3), but does not 
make strong predictions for temporal change. 
The effort-minimization perspective (Sauer 

et al., 2003) implies that fatigue should produce 
greater reliance on automation, and hence auto-
mation-dependence should increase with time 
on task (H4).

Individual differences in stress response 
and performance. Previous studies of vigilance 
(Shaw et  al., 2010) and unmanned vehicle 
operation (Szalma & Taylor, 2011) broadly 
predict that low neuroticism and high conscien-
tiousness should predict more adaptive states 
during performance, including higher task 
engagement and lower distress (H5). Vigilance 
studies identify task engagement with resource 
availability, implying that task engagement 
should correlate with detection accuracy (H6), 
especially as task demands increase (WR task, 
low reliability). An effort-minimization per-
spective predicts that task engagement should 
be negatively associated with automation 
dependence (H7).

Method
A previous short paper (Wohleber et  al., 

2016) reported results from this study pertain-
ing to the automation reliability manipulation. 
The present article provides a comprehensive 
description of this study’s results and specifi-
cally addresses vigilance effects. It adds analy-
ses of individual differences and further post 
hoc analysis and regression modeling relevant 
to our current aims. The study utilized a mixed-
model design with automation reliability (high 
vs. low) as a between-groups variable and time 
on task (eight 15-min intervals) as a repeated-
measures variable.

Participants
Participants were 131 University of Central 

Florida undergraduate psychology students (50 
women, 81 men, Mage = 19.86, age range: 
18–31 years), who received class credit. Popula-
tions vulnerable to stress manipulations due to 
mental disorder or unable to perform required 
tasking (due to uncorrected vision impairment, 
lack of fluency in English, physical disability) 
were excluded. The study was approved by 
the University of Central Florida Institutional 
Review Board.
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Subjective Measures
Demographics questionnaire.  The demograph-

ics questionnaire asked about biographical infor-
mation including education, computer use, and 
expertise on several categories of video games 
(rated on 7-point scales).

Workload.  The NASA-Task Load Index 
(NASA-TLX: Hart & Staveland, 1988) requires 
0 to 100 ratings of six workload components: 
performance, mental demand, physical demand, 
temporal demand, effort, and frustration. Over-
all workload was calculated as an unweighted 
mean of ratings, given that the weighting proce-
dure sometimes used does not improve the psy-
chometric properties of the scale (Hendy, 
Hamilton, & Landry, 1993).

Stress state.  The short, 21-item Dundee 
Stress State Questionnaire (DSSQ: Matthews 
et al., 2002) was administered to gauge symp-
toms of passive fatigue. Participants completed 
a pretask DSSQ prior to training, and after the 
experimental trial, a posttask DSSQ on their 
state in the final 10 min of the trial. The DSSQ 
assesses three higher order dimensions of sub-
jective state in a task-performance context: task 
engagement, distress, and worry.

Personality.  FFM extraversion, agreeable-
ness, openness, conscientiousness, and neuroti-
cism traits were assessed using Saucier’s (2002) 
Mini-Markers. Participants rated the extent to 
which 40 different adjectives described their 
personalities using a 9-point Likert scale.

Simulator
The ALOA research testbed (Johnson, Leen, 

& Goldberg, 2007) provided a UAS control 
environment for eight tasks that mimicked pro-
jected cognitive demands of controlling four 
UAS. Simulator configuration for this study 
was based on insights from Lin et al. (2018) and 
pilot testing. Table 1 lists the tasks, their priori-
ties (1 = highest), the frequency of stimuli for 
the whole trial, and the roles assigned to the 
automation and the participant. Figure 1 shows 
task locations. Each UAS was allocated to a 
route automatically, and the participant could 
follow the progress of the UAS toward the end 
of its route on the map display. Overall task 
frequency was set to around 2 per min, trial 
duration was 120 min, and various tasks were 

automated to elicit passive fatigue (see details 
below). This report focuses on the two surveil-
lance tasks: IA and WR.

Surveillance tasks.  IA and WR tasking 
shared top priority (Figure 1a, left side of panel). 
As the four vehicles passed target locations, 
their sensor payloads collected image data that 
participants then had to analyze. These IA and 
WR tasks populated respective queues (Figure 
1a) for participants to select and complete one at 
a time. Clicking on the row of data in the queue 
windows displayed the IA or WR image in the 
surveillance task window. Tasks in each queue 
timed out after 30 s (IA) or 20 s (WR) if not 
selected and completed. Sample stimuli for the 
tasks are shown in Figure 2. In the IA task, 19 to  
26 green symbols (diamonds, squares, circles, 
and triangles) overlaid the imagery, of which 1 
to 8 were diamonds. The eight options for the 
correct number of diamonds were presented 
below the image, one of which was highlighted 
by the automation. The participant either con-
firmed the automation’s recommended option or 
clicked on another option. For the WR task, par-
ticipants had to ensure that the automation had 
correctly identified enemy tanks (marked with 
red squares). The terrain photo was overlaid 
with a total of 2 to 7 tank images. Of these, 0 to 
5 were friendly, and 0 to 4 were hostile. The two 
types of tank differed slightly in their dimen-
sions and gun barrel length. For each image, the 
automated target recognition marked 1 to 5 tanks 
with the red box indicating they should be tar-
geted, including 0 to 4 friendly tanks and 0 to 4 
enemy tanks. Participants either confirmed that 
the recommended weapon strike option (“Autho-
rize” or “Do Not Authorize”) was correct or 
clicked on the alternate option.

For both tasks, participants had to change  
or confirm the automation’s recommendation 
before the task timed out (management-by-
consent LOA). Recommendations were 60% 
accurate in the low-reliability condition and 
86.7% in the high-reliability condition, for both 
tasks, with minor variation across time blocks 
due to scenario constraints. These reliability val-
ues aimed to establish a strong contrast between 
conditions, based on Wickens and Dixon’s 
(2007) finding from 20 studies that a reliability 
of 70% was the “crossover point” below which 
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unreliable automation was worse than no auto-
mation at all. Pilot studies confirmed that par-
ticipants were aware of the reliability difference.

Three performance measures were assessed 
for each 15-min interval. The interval duration 
was chosen to be short enough to track vigi-
lance effects, but long enough to provide an 
adequate sampling of responses for each task 
type. In that the multi-UAS scenario simulates 
an envisioned operational mission, the timing 
of the IA and WR tasks was driven by the pro-
gression of the four UAS on the routes with 
respect to the location of targets in the mission 
environment. Thus, the number of IA and WR 
tasks slightly varied in each time interval (7–9 
of each surveillance task type per interval). 
Accuracy was defined as the overall percentage 
of correct decisions. Automation dependence 
was measured as the percentage of trials on 
which the participant confirmed the automa-
tion’s decision, following Barg-Walkow and 
Rogers’s (2016) definition. Neglect was defined 
as the percentage of images appearing in the 
queues that the participant failed to select, so 

that the image was not processed before time 
expired.

Procedure
Each participant was allocated at random to 

the high-reliability (n = 67) or low-reliability 
(n  = 64) condition. After informed consent, 
participants completed the demographics ques-
tionnaire, Mini-Marker scale, and pretask DSSQ. 
Next, training (lasting approximately 60 min) 
was conducted with the participant’s assigned 
reliability level in effect. Training consisted of a 
PowerPoint orientation detailing the test environ-
ment and steps for completing all tasks, followed 
by practice trials containing all tasking. Partici-
pants were provided with the task priorities listed 
in Table 1. A researcher monitored participants, 
answered questions, and ensured that they were 
aware of task priorities and completed each task 
component according to the rules provided. When 
the researcher was satisfied with the participant’s 
competence, the main 2-hr trial was initiated. Par-
ticipants ended the 4-hr test session by completing 
the NASA-TLX and posttrial DSSQ scales.

Table 1: Summary of ALOA Simulation Tasks

Task Priority Frequency Automation (A) and Operator (O) Roles

1. Allocation & 
rerouting

N/A 20 each A: Full (100% reliable)
O: None

2. Image analysis 1 60
(time out 30 s)

A: Recommends option (60 or 86.7% reliable)
O: Select option with correct number of diamonds

3. Weapon 
release

1 60
(time out 20 s)

A: Recommends option (60 or 86.7% reliable)
O: Select correct strike authorization option

4. Unidentified 
aircraft

2 48
(time out 10 s)

A: None
O: Click red plane symbol when appears on map

5. Digit pairs 3 16
(time out 10 s)

A: None
O: Respond (true/false) whether two digits meet 

two criteria (for difference & sum)
6. Audio chatter 3 16

(time out 15 s)
A: None
O: If call sign prompted, enter designated color/

number in chat. Otherwise, ignore
7. Health/status 3 16

(time out 15 s)
A: None
O: Click lighted (yellow or red) indicator

8. Chat questions 3 8 response prompts
16 “noise” prompts

A: None
O: Type answer in chat using information in 

vehicle status windows. Ignore “noise” prompts
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Results
For all analyses, Box’s corrections were used 

to correct for violations of sphericity, and Bon-
ferroni corrections were used to correct for post 
hoc family-wise error.

Subjective Outcomes
Three 2 (pre vs. posttask) × 2 (low vs. high 

reliability) mixed-model analyses of variance 
(ANOVAs), run for each stress state factor (Fig-
ure 3), revealed that the 2-hr trial significantly 

Figure 1. ALOA Simulator left (a) and right (b) monitors.
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reduced task engagement, F(1, 129) = 197.64, 
p < .001, η2

p = .605, d = 1.31. There was also a 
small but significant interaction effect for worry, 
F(1, 129) = 5.27, p = .023, η2

p = .039; post 
hoc contrasts showed a significant increase with 
low-reliability automation (p < .001, d =.48), 
but no change with high-reliability automation 
(p = .570, d =.07). A t test revealed that the 
low-reliability condition elicited higher NASA-
TLX workload (M = 39.65, SD = 16.64) than 
did the high-reliability condition (M = 32.26, SD 
= 16.82), t(129) = 2.53, p = .013, d = .44. There 
were no significant main or interactive effects of 
task factors on distress.

Performance-Based Outcomes
A series of 2 (low vs. high reliability) × 8 

(time on task: 15 min intervals) mixed-model 

ANOVAs were run for accuracy, automation-
dependence, and neglect performance measures.

Accuracy.  Accuracy was improved with high-
reliability automation for both IA, F(1, 129) = 9.52, 
p = .002, η2

p = .069, and WR tasks, F(1, 129) = 
11.05, p = .001, η2

p = .079. Accuracy also 
changed with time for both tasks: F(5.57, 718.39) 
= 18.70, p < .001, η2

p = .127, and F(5.15, 
663.75) = 27.52, p < .001, η2

p = .176, 
respectively. Finally, results revealed significant 
interactions between reliability and time for IA, 
F(5.57, 718.39) = 2.41, p = .030, η2

p = .018, 
and for WR, F(5.15, 663.75) = 17.51, p < .001, 
η2

p = .120.
Temporal trends for accuracy are shown in 

Figure 4. To clarify time on task effects, Table 2 
shows effect sizes (ds) for changes in accuracy 
from the initial baseline, that is, block 1, calcu-
lated separately for each group using Morris and 
DeShon’s (2002) procedure for single-group 
repeated-measures designs. Conventionally, val-
ues of .2, .5, and .8 are considered small, 
medium, and large effect sizes (Cohen, 1988). 
Significance levels for change from baseline 
were derived from one-factor repeated-measures 
ANOVAs for each group; the main effect of time 
block was significant at p < .001 in each case. 
Simple contrasts with block 1 were calculated 
by the SPSS GLM procedure. Table 2 suggests 
that IA accuracy was unstable during the first 
hour of the performance, with performance 
declines in blocks 2 and 4 in both reliability con-
ditions. However, performance returned to base-
line levels in the second hour of the task (blocks 
5–8) in the high-reliability condition, and 
showed only modest tendencies toward decre-
ment in blocks 5 and 7 when reliability was low. 
WR accuracy, in the high-reliability condition, 
after initial instability showed a 30 min interval 
of impairment in blocks 5 and 6, prior to recov-
ery. In the low-reliability condition, WR accu-
racy showed a more sustained 1-hr period 
(blocks 4–7) of impairment relative to baseline, 
before recovering in the final block.

Automation dependence.  The high-reliability 
automation evoked substantially higher depen-
dence in both IA, F(1, 129) = 393.35, p < .001, 
η2

p = .753, and WR tasks, F(1, 129) = 205.66, 
p < .001, η2

p = .615. Main effects of time were 
significant for both IA, F(5.44, 701.92) = 40.48, p 
< .001, η2

p = .239, and WR, F(5.14, 663.40) = 

Figure 2. Sample images for Image Analysis (upper) 
and Weapon Release (lower) tasks. The Weapon 
Release image shows the automation correctly marking 
two enemy tanks on the left, and incorrectly marking 
two friendly tanks on the right. Additionally, the enemy 
tank at the center of the image should be marked.
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41.99, p < .001, η2
p = .246. Time on task effects 

were significantly moderated by reliability of 
automation for WR, F(5.44, 701.92) = 19.41, p 
< .001, η2

p = .131, and IA, F(5.14, 663.40) = 
12.46, p < .001, η2

p = .088. For IA, the trend is 

difficult to interpret (Figure 5a), but dependence 
on the high-reliability automation appeared 
more consistent than dependence on the low-
reliability automation. For WR, dependence 
generally declined with time, but dependence on 

Figure 3. Self-reported stress states (DSSQ). Error bars represent standard errors.

Figure 4. Accuracy for Image Analysis (a) and Weapon Release (b) tasks. Error bars represent standard errors.
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low-reliability automation saw a more pronounced 
decline (and was more erratic) than dependence 
on high-reliability automation.

Neglect: For both surveillance tasks, neglect 
(failure to process tasks) did not differ by reliabil-

ity level but did change with time on task, F(5.05, 
631.25) = 4.57, p < .001, η2

p = .035, and F(5.03, 
618.22) = 17.94, p < .001, η2

p  = .127. Whereas 
time trends for both were irregular, each 
showed an increase in neglect after 45 min 

Table 2: Effect sizes (d) for accuracy changes from initial baseline (time block 1)

Task Reliability

Time Block

2 3 4 5 6 7 8

IA High –.49** .37** –.81** –.07 .20 .18 .28*
IA Low –.95** –.28 –1.05** –.40** –.10 –.39* .11
WR High –.79** –.01 –.09 –.47** –1.02** –.37 .12
WR Low –.29 .05 –.62** –.53** –1.04** –1.99** .17

*p < .05. **p < .01.

Figure 5. Dependence on automation in (a) Image Analysis and (b) Weapon Release tasks. Error bars represent 
standard errors.
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(Figure 6). Neither task showed a reliability × 
time interaction.

Individual Differences
Trait correlates.  There were several signifi-

cant correlations between FFM traits and posttask 
DSSQ states. Extraversion was negatively corre-
lated with task engagement (r = −.19, p < .05), 
Neuroticism was associated with higher distress 
(r = .29, p < .01) and worry (r = .33, p < .01), 
and Conscientiousness predicted lower distress (r 
= −.35, p < .01) and worry (r = −.22, p < .05).

Correlations were computed between the 
FFM and the principal performance measures 
for WR and IA, that is, accuracy, dependence on 
automation, and neglect of surveillance tasks. 
Significant correlations did not exceed chance 
levels, and regression analyses did not show any 

interactive effects of FFM traits and reliability 
on performance.

State correlates.  A multiple regression approach 
was used to investigate performance correlates of 
posttrial DSSQ states. For these analyses, we 
focused on the second hour of performance, 
during which it was likely that participants were 
experiencing fatigue. That is, dependent mea-
sures were the performance variables averaged 
across time blocks 5 through 8. Six regressions 
were computed, corresponding to three perfor-
mance variables × two surveillance tasks. 
Four-step hierarchical regressions were com-
puted. Step 1 included two control variables 
found to be predictive of stress and performance 
in a previous study (Lin et  al., 2018): gender 
and self-rated expertise in “first person shooter” 
(FPS) video games. Lin et al. (2018) found that 
FPS expertise predicted higher WR accuracy; 

Figure 6. Neglect in (a) Image Analysis and (b) Weapon Release tasks. Error bars represent standard errors.
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both gaming and UAS operation may require 
multitasking skills. Step 2 controlled for reli-
ability, coded as 1 (high) or −1 (low). Step 3 
comprised the three centered post-DSSQ scales, 
and Step 4 added the DSSQ × Reliability prod-
uct terms.

Table 3 shows summary statistics for regres-
sions showing significant contributions from state 
measures. For both accuracy measures, higher 
reliability was positively associated with perfor-
mance, consistent with the ANOVAs. For WR, 

the distress × reliability interaction was signifi-
cant. As shown in Figure 7, distress tended to be 
positively correlated with accuracy in the high-
reliability condition, but the regression was nega-
tive at low reliability. Imaging accuracy was lin-
early associated with lower worry and higher task 
engagement (trend only). Higher distress was 
associated with greater neglect for both tasks; 
task engagement was associated with lower 
neglect on IA. For the two automation-depen-
dence regressions, neither linear nor interactive 

Figure 7. Association between posttask distress and accuracy moderated 
by automation reliability for Weapon Release tasks: Regression model.

Table 3: Regressions of Selected Performance Measures on Stress States, Reliability, and Control 
Variables: Summary Statistics

Accuracy: 
Weapon Release

Accuracy: 
Imaging

Neglect: 
Weapon Release

Neglect: 
Imaging  

Step R ΔR2 R ΔR2 R ΔR2 R ΔR2 df(Δ)

1.Control variables .04 .00 .05 .00 .09 .00 .11 .01 2,128
2. Reliability .36** .13** .26* .06** .17 .02 .11 .00 1,127
3. States: Linear .39** .02 .43** .12** .35* .10** .35* .11** 3,124
4. States: Interactions .50** .10** .47** .03 .36 .01 .39* .03 3,121
Significant at final 

step
Reliability  

(β = .36**), 
Distress × 
Reliability  
(β = .32**)

Reliability  
(β = .22*), 
Worry (β = 
−.17*), Task 
Engagement  
(β = −.16,  
p = .068)

Distress  
(β = −.25*)

Distress  
(β = −.21*),  
Task 
Engagement 
(β = −.24*)

 

*p < .05. **p < .01.
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stress state terms contributed significantly to the 
equations. Similar to the ANOVAs, reliability had 
a significant effect in both; βs at Step 4 were .74 
(p < .01) for WR and .86 (p < .01) for IA.

Discussion
UAS operators commonly report that pro-

longed missions lead to fatigue and difficul-
ties in sustaining attention (Chappelle, Salinas, 
& McDonald, 2011; Cummings et  al., 2013; 
Tvaryanas & Macpherson, 2009). The present 
multi-UAS simulation study elicited compa-
rable symptoms of large-magnitude loss of task 
engagement and vigilance decrement on the 
more demanding of two surveillance tasks. Indi-
vidual differences in task engagement and dis-
tress were associated with different performance 
indices. An unexpected temporal decline in 
automation-dependence was also observed. We 
will discuss the central issue for this research: 
Is this vigilance as we know it from laboratory 
studies and the Warm et  al. (1996) resource 
theory? We will also consider the relationship 
between vigilance decrement and changes in 
automation dependence, as well as practical 
implications and study limitations.

Sources of Vigilance Decrement in 
Multi-UAS Operation

Warm’s resource theory (Warm et al., 1996; 
Warm, Finomore, Vidulich, & Funke, 2015; 
Warm, Parasuraman, & Matthews, 2008) 
describes several signature features of the 
demanding vigilance tasks that typically show 
performance decrements (See et al., 1995). The 
task elicits high workload, elevated distress, and 
reduced task engagement (H1), and declines in 
detection rate are moderated by task demands 
(H2). The current data provide partial sup-
port for H1, although distress did not increase. 
Patterns of temporal change in accuracy sug-
gested some instability in performance in the 
initial time blocks. In the second hour of the task, 
temporal decline in accuracy was more evident 
for the more demanding of the two surveil-
lance tasks (WR), and for this task, decrement 
was more pronounced with low-automation  
reliability. Low reliability produced higher 
workload and might elicit greater sensitivity of 
performance to loss of resources. Thus, H2 was 

supported for WR, but performance on the IA 
task was better sustained over time.

However, the time course for loss of vigilance 
on WR differed from standard vigilance decre-
ment. Typically, most decrement occurs during 
the first 20 to 30 min of the session (See et al., 
1995; Warm, Parasuraman, & Matthews, 2008). 
By contrast, in the low-reliability condition, WR 
accuracy was fairly stable for the first 45 min, 
declined progressively for the next hour, and 
recovered sharply in the final 15 min. In the high-
reliability condition, there was a less pronounced 
curvilinear trend of this kind. Recovery of vigi-
lance toward the end of the task or “end effect” 
(Bergum & Lehr, 1963) is seen when participants 
can anticipate the end of the task, resulting from 
motivational factors (Oken, Salinsky, & Elsas, 
2006). In ALOA, participants can track the prog-
ress of vehicles to an end point on the map dis-
play, which may have encouraged a burst of 
effort in the final block. However, the delayed 
onset of vigilance decrement is more unusual and 
suggests that over shorter durations, UAS sur-
veillance tasks may be less vulnerable to decre-
ment than laboratory studies would suggest.

Subjective state data also differed somewhat 
from the typical response to vigilance. A large-
magnitude decline in task engagement was 
observed, characteristic of vigilance (Matthews 
Szalma, Panganiban, Neubauer, & Warm, 2013) 
and observed in another UAS simulation study 
(Guznov, Matthews, Warm, & Pfahler, 2017). 
However, the NASA-TLX workload of 35.8 
was well below the scale midpoint of 50, similar 
to Gunn et al.’s (2005) study requiring detection 
of warning signals in a UAS context. The stabil-
ity of distress across the trial was also unex-
pected, given previous studies on the stress of 
vigilance (Warm, Matthews, & Finomore, 
2008). For example, a vigilance study requiring 
detection of changes in symbology on a map dis-
play (Matthews, Warm, Shaw, & Finomore, 
2014) found that distress increased by nearly 1 
standard deviation during a 1-hr vigil.

The relatively low workload of the present 
tasks may have mitigated distress, producing a 
passive fatigue state similar to those observed 
in studies of automated car driving (Matthews 
et  al., 2018; Saxby et  al., 2013). The multi-
UAS task required greater cognitive activity 
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than the vehicle driving tasks, due in part to the 
multiple task demands. However, the declines 
in task engagement were of similar or greater 
magnitude to those observed in the automated 
driving studies (e.g., Saxby et al., 2013), with-
out any concomitant increase in distress. Thus, 
passive fatigue may be an operational issue 
even when operators are required to perform 
routine task activities, given sufficient task 
duration.

The modest workload of the task raises the 
question of why any vigilance decrement 
should be found, given that the resource model 
(Warm et  al., 1996) attributes resource-deple-
tion to high, prolonged workload. A possible 
explanation for both the workload finding and 
delayed onset of vigilance decrement is that 
although workload was generally low, it was 
still sufficient to slowly deplete resources. 
Despite the low event rate for the surveillance 
tasks, the impact of low reliability on workload 
implies that processing these tasks contributed 
to workload, and resources may have depleted 
faster under low reliability. After an hour or so, 
resources were sufficiently low for more 
resource-demanding tasks (i.e., WR) to show 
performance deficits. In low-workload, passive 
fatigue states, variation in task-directed effort 
may influence performance separately from 
resource variation (Matthews & Desmond, 
2002). The increasing neglect of tasks in the 
second half of the trial also suggests loss of 
motivation, which may have accentuated 
resource-depletion effects on WR during the 
period from 45 to 105 min. Increased motiva-
tion associated with the end effect was suffi-
cient to compensate for the resource shortfall in 
the final task period.

Dependence on Automation
System reliability influenced automation-

dependence as expected (H3). However, the 
anticipated increase in dependence as operators 
became more fatigued, and therefore effort-min-
imizing (Sauer et  al., 2003) was not observed, 
contrary to H4. There was no clear trend for the 
IA task, and WR dependence decreased system-
atically over time, especially in the low-reliability 
condition. Relative to automation accuracy, 
participants tended to be overdependent initially, 

and underdependent by the end of the task. 
Decreasing automation dependence may have 
contributed to the observed WR vigilance decre-
ment, but the two temporal plots do not closely 
correspond.

In Parasuraman and Manzey’s (2010) 
account, high reliability promotes dependence, 
so it is surprising that WR dependence also 
declined in this condition. Relying on the auto-
mation to handle this difficult task would seem 
an effective strategy for energy conservation. A 
possible explanation is that evaluating the per-
formance of the automation is itself seen as an 
additional task. As fatigue develops, partici-
pants sought to reduce demands by increasingly 
ignoring the automation, consistent with evi-
dence on task-shedding under fatigue (Russo 
et  al., 2004), even though this strategy was 
counterproductive.

Individual Differences in Stress 
Response and Performance

Neuroticism and low conscientiousness pre-
dicted distress, similar to Shaw et al. (2010) and 
other studies (Matthews et al., 2013), providing 
partial support for H5. Contrary to the hypothe-
sis, neither trait was associated with task engage-
ment. Lin et al. (2018) found that conscientious-
ness was associated with engagement only under 
high workload, which may moderate personal-
ity effects. Extraversion, which correlates with 
boredom-proneness (Hunter, Abraham, Hunter, 
Goldberg, & Eastwood, 2016), was the only trait 
predictor of (low) task engagement. However, 
there were no significant associations between 
traits and performance.

Task engagement is a reliable correlate of 
detection accuracy in standard vigilance para-
digms (Matthews et  al., 2010, 2014). Here, 
engagement was associated only with the easier 
of the two tasks (Imaging), contrary to prediction 
from resource theory (H6). Engagement was also 
associated with lower task neglect, as in a previ-
ous study (Lin et al., 2018), suggesting a motiva-
tional mechanism. However, state factors were 
unrelated to automation-dependence, contrary to 
H7. The regression analysis showed a positive 
association between distress and WR detection 
accuracy under high reliability, but a negative 
one when reliability was low. Distress was also 
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associated with greater neglect, irrespective of 
reliability. Negative relationships between dis-
tress and attention have been observed in other 
multitasking environments (Matthews & Camp-
bell, 2010; Matthews, Reinerman-Jones, et  al., 
2017) and may reflect disruptive effects of the 
state on the executive processing necessary to 
coordinate multiple tasks. Similarly, Eysenck 
and Derakshan’s (2011) Attentional Control The-
ory acknowledges that anxiety and stress may 
enhance performance on easy tasks due to com-
pensatory effort.

Practical Implications
In their review of vigilance for Human 

Factors, Warm, Parasuraman, and Matthews 
(2008, p. 438) identified applications in “the 
design of work environments involving vigi-
lance functions and in the evaluation of those 
who carry out such functions.” From a design 
standpoint, contemporary vigilance research 
highlights workload mitigation, but the current 
findings implicate the need to support operator 
motivation during extended missions. Hancock 
(2013) discusses design principles that support 
operator engagement (see also Szalma, 2014); 
interface design might also be individualized 
according to operator personality (Szalma, 
2009). This study also identified a specific issue 
of progressive underutilization of automation, 
implying that interface design should increase 
the salience of recommendations, along with 
training.

The findings also highlight applications for 
operator evaluation. They do not support select-
ing operators on the basis of personality, 
although they identify possible attrition risks for 
individuals who find the task especially distress-
ing or fatiguing. The link between high distress 
and poor performance in demanding task con-
figurations is significant because distress also 
correlated with lower accuracy in a high-
workload version of ALOA (Lin et  al., 2018). 
Diagnostic monitoring for stress and fatigue that 
could drive adaptive automation may be of value 
(Kidwell et  al., 2012), although valid psycho-
logical markers for operator stress need to be 
determined (Kamzanova, Kustubayeva, & Mat-
thews, 2014).

Limitations
An obvious limitation is the use of untrained 

civilian participants rather than Air Force per-
sonnel, which was necessary for an adequate 
sample size. Similarly, a simulation cannot fully 
capture operational conditions and demands, 
although in this case simulation is necessary 
because of the absence of fielded multivehicle 
systems. Future work should test whether the 
current findings generalize across different task 
configurations, LOAs, and mission demands. 
It is also challenging to test resource theory 
predictions using complex tasks such as ALOA, 
which include multiple subtasks, imposing 
somewhat differing cognitive demands. It is 
possible that vigilance effects on surveillance 
tasks would be influenced by the nature of con-
current multitasking. The automation used here 
was also limited in nature and does not afford 
investigation of key factors such as transpar-
ency (Lyons, 2013). Due to scenario constraints, 
there was some variability in the frequency of 
events and automation reliability from block to 
block, which may have added statistical noise 
to the data. In addition, the present dependence 
metric is not informative about how participants 
arrived at their response decision on each trial 
(Rice & Geels, 2010). Further theoretical and 
empirical efforts are necessary to understand 
sources of changes in dependence on automa-
tion. Finally, while the current focus was on 
task-induced fatigue, operational settings intro-
duce additional stressors, including sleep qual-
ity and long hours of work (Ouma et al., 2011), 
which may impinge differently on performance.

Conclusion
The current study confirmed that a 2-hr 

simulation of multi-UAS operation produced 
vigilance decrement and loss of task engage-
ment, together with increasing underuse of auto-
mation. The Warm et al. (1996) resource theory 
does not fully explain the effects observed, 
and future work in this domain should focus 
on changes in sustained attention during mul-
ticomponent task performance, as well as on 
motivational and individual difference factors. 
Improved understanding of temporal change in 
cognitive, motivational, and affective processes 
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will support better strategies for interface design 
and operator support.
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Key Points
•• Operators of future multiple Unmanned Aerial 

Systems (UAS) may be vulnerable to fatigue and 
loss of vigilance.

•• A multi-UAS simulation study was conducted that 
induced fatigue and tested for changes in vigilance 
and dependence on automation.

•• Vigilance decrement was observed during per-
formance of surveillance tasks, accompanied by 
decreasing dependence on automation; these find-
ings cannot be fully explained by the resource 
theory of Joel Warm and others.

•• The participant’s level of distress correlated with 
poorer performance, especially when automation 
reliability was low.
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