All publications below are based upon work supported by NSF, most recently by NSF grant DMS-2304207 and NSF CAREER award DMS-1454342, and since Sep 2021 by the Simons Foundation Collaboration Grant 855299.

- On the barcode entropy of Reeb flows, co-authors: E. Çineli, V.L. Ginzburg, M. Mazzucchelli, Preprint 2024, arXiv 2401.01421.
- On the generic behavior of the spectral norm, co-authors: E. Çineli, V.L. Ginzburg, Preprint 2023, arXiv 2310.00470.
- Invariant sets and hyperbolic closed Reeb orbits, co-authors: E. Çineli, V.L. Ginzburg, M. Mazzucchelli, Preprint 2023, arXiv 2309.04576.
- Barcode entropy of geodesic flows, co-authors: V.L. Ginzburg, M. Mazzucchelli, Preprint 2022, arXiv 2212.00943.
- Lower semi-continuity of Lagrangian volume, co-authors: E. Çineli, V.L. Ginzburg, Preprint 2022, arXiv 2210.04357.
- On the growth of the Floer barcode, co-authors: E. Çineli, V.L. Ginzburg, Preprint 2022, arXiv 2207.03613.
- Topological entropy of Hamiltonian diffeomorphisms: a persistence homology and Floer theory perspective, co-authors: E. Çineli, V.L. Ginzburg, Preprint 2021, arXiv 2111.03983.
- Pseudo-rotations vs. rotations, co-author: V.L. Ginzburg,
*J. London Math. Soc.*(2022), doi:10.1112/jms.12665. - Another look at the Hofer–Zehnder conjecture, co-authors: E. Çineli, V.L. Ginzburg,
*J. Fixed Theory Appl., Claude Viterbo’s 60th Birthday Festschrift*,**24**(2022), doi:10.1007/s11784-022-00937-w. - On the spectral characterization of Besse and Zoll Reeb flows, co-authors: V.L. Ginzburg, M. Mazzucchelli,
*Ann. Inst. H. Poincaré Anal. Non Linéaire*,**38**(2021), 549-576. - Pseudo-rotations and holomorphic curves, co-authors: E. Çineli, V.L. Ginzburg,
*Selecta Math. (NS)*,**26**(2020), Article No. 78, doi:10.1007/s00029-020-00609-y. - From pseudo-rotations to holomorphic curves via quantum Steenrod squares, co-authors: E. Çineli, V.L. Ginzburg,
*Int. Math. Res. Not. IMRN*, 2020, doi:10.1093/imrn/rnaa173. - Lusternik-Schnirelmann theory and closed Reeb orbits, co-author: V.L. Ginzburg,
*Math. Z.*,**295**(2020), 515–582. - Approximate identities and Lagrangian Poincaré recurrence, co-author: V.L. Ginzburg,
*Arnold Math J.*,**5**(2019), 5–14. - Conley conjecture revisited, co-author: V.L. Ginzburg,
*Int. Math. Res. Not. IMRN*,**3**(2019), 761–798. - Hamiltonian pseudo-rotations of complex projective spaces, co-author: V.L. Ginzburg,
*Invent. Math.*,**214**(2018), 1081–1130. - Multiplicity of closed Reeb orbits on prequantization bundles, co-authors: V.L. Ginzburg, L. Macarini,
*Israel J. Math.*,**228**(2018), 407–453. - Non-contractible periodic orbits in Hamiltonian dynamics on closed symplectic manifolds, co-author: V.L. Ginzburg,
*Compos. Math.*,**152**(2016), 1777–1799. - The Conley conjecture and beyond, co-author: V.L. Ginzburg,
*Arnold Math J.*,**1**(2015), 299–337. - On the Conley conjecture for Reeb flows, co-authors: V.L. Ginzburg, L. Macarini,
*Internat. J. Math.*,**26**(2015), 1550047 [22 pages], doi:10.1142/S0129167X15500470. - Fragility and persistence of leafwise intersections, co-author: V.L. Ginzburg,
*Math. Z.*,**28**(2015), 989–1004. - Perfect Reeb flows and action-index relations,
*Geom. Dedicata*,**174**(2015), 105–120. - Periodic orbits of Hamiltonian systems linear and hyperbolic at infinity,
*Pacific J. Math.*,**271**(2014), 159–182. - Hyperbolic fixed points and periodic orbits of Hamiltonian diffeomorphisms, co-author: V.L. Ginzburg,
*Duke Math. J.*,**163**(2014), 565–590. - On non-contractible periodic orbits of Hamiltonian diffeomorphisms,
*Bull. Lon. Math. Soc.*,**45**(2013), 1227–1234. - Action-index relations for perfect Hamiltonian diffeomorphisms, co-authors: M. Chance and V.L. Ginzburg,
*J. Symplectic Geom.*,**11**(2013), 449–474. - Conley conjecture for negative monotone symplectic manifolds, co-author: V.L. Ginzburg,
*Int. Math. Res. Notices IMRN*,**8**(2012), 449–474. - Local Floer homology and the action gap, co-author: V. L. Ginzburg,
*J. Symplectic. Geom.*,**8**(2010), 323–357. - Leafwise coisotropic intersections,
*Int. Math. Res. Not. IMRN*(2010), 914–931. - On the generic existence of periodic orbits in Hamiltonian dynamics, co-author: V.L. Ginzburg,
*J. Mod. Dyn.*,**3**(2009), 595–610. - Action and index spectra and periodic orbits in Hamiltonian dynamics , co-author:V.L. Ginzburg,
*Geom. Topol.*,**13**(2009), 2745–2805. - Periodic orbits of twisted geodesic flows and the Weinstein-Moser theorem, co-author: V.L. Ginzburg,
*Comment. Math. Helv.*,**84**(2009), 865–907. - Totally non-coisotropic displacement and its applications to Hamiltonian dynamics,
*Commun. Contemp. Math.*,**10**(2008), 1103–1128. - The generalized Weinstein-Moser theorem, co-author: V.L. Ginzburg,
*Electron. Res. Announc. Math. Sci.*,**14**(2007), 20–29. - Relative Hofer-Zehnder capacity and periodic orbits in twisted cotangent bundles, co-author: V.L. Ginzburg,
*Duke Math. J.*,**123**(2004), 1–47. - A C
^{2}-smooth counterexample to the Hamiltonian Seifert conjecture in R^{4}, co-author: V.L. Ginzburg,*Ann. of Math.*,**158**(2003), 953–976. - On the construction of a C
^{2}-counterexample to the Hamiltonian Seifert conjecture in R^{4}, co-author: V.L. Ginzburg,*Electron. Res. Announc. Amer. Math. Soc.***8**(2002), 11–19. - Hamiltonian Seifert Conjecture and the Relative Almost Existence Theorem, Ph.D. Thesis, September 2003, University of California at Santa Cruz.