Journal Publications

  1. R. Behera, J. K. Sahoo, R. N. Mohapatra, and M. Z. Nashed. Computation of Generalized Inverses of Tensors via t-Product. Accepted in Numerical Linear Algebra with Applications (2021).
  2. D. Gerontitis,  R. Behera,  P. Tzekis, P. Stanimirovic.  A Family of Varying-Parameter Finite-Time Recurrent Neural Networks for Time-Varying Sylvester Equation and its Application. Journal of Computational and Applied Mathematics (2021).
  3. P.  Stanimirović,  D. Gerontitis,  P. Tzekis,  R. Behera,  J. K. Sahoo.  Simulation of Varying Parameter Recurrent Neural Network with application to matrix inversion. Mathematics and Computers in Simulation (2021).
  4. P. S. Stanimirović,  J. R. Sendra,  R. Behera,  J. K. Sahoo,  D. Mosić;  J. Sendra,  A. Lastra.  Computing tensor generalized inverses via specialization and rationalization. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.
  5. D. Mosic, P. S. Stanimirovic, J. K. Sahoo, R. Behera, and V. N. Katsikis. One-sided weighted outer inverses of tensors. Journal of Computational and Applied Mathematics (2021) 113293,
  6. D. Gerontitis, R. Behera, J. K. Sahoo, P. Stanimirovic.  Improved finite-time zeroing neural network for time-varying division. Studies in Applied Mathematics, 2021146526-549.
  7. R. Behera, G. Maharana, and J. K. Sahoo Further results on weighted core-EP inverse of matricesResults in Mathematics, 75, 174 (2020).   
  8. R. Behera,  D. Mosic,  J. K. Sahoo, and  P. S. Stanimirovic. Weighted Inner Inverse for Rectangular Matrices, Quaestiones Mathematicae, (2020),
  9. R. Behera, S. Maji, and R. N. Mohapatra. Weighted Moore-Penrose inverses of arbitrary-order tensors. Computational and Applied Mathematics. 39, 284, (2020),
  10. R. Behera, A. K. Nandi, and J. K. Sahoo, Further results on the Drazin inverse of even-order tensors. Numerical Linear Algebra with Applications (2020)
  11. J. K. Sahoo, R. Behera, P. S. Stanimirovic and V. N. Katsikis. Computation of outer inverses of tensors using the QR decomposition. Computational and Applied Mathematics. (2020)
  12. R. Behera and J. K. Sahoo, Generalized Inverses of Boolean Tensors via Einstein Product,  Linear and Multilinear Algebra (2020),
  13. J. K. Sahoo and R. Behera, Reverse-order law for core inverse of tensors. Computational and Applied Mathematics, 39(97), (2020).
  14. J. K. Sahoo, R. Behera, P. S. Stanimirovic, V. N. Katsikis, and H. Ma. Core and Core-EP Inverses of Tensors. Computational and Applied Mathematics, (2020).
  15. K. Panigrahy, R. Behera, and D. Mishra, Reverse order law for the Moore-Penrose inverses of tensors, Linear and Multilinear Algebra,  68(2), 2020, 246–264
  16. R. Behera, S. Meignen, and T. Oberlin, Theoretical analysis of the second-order synchrosqueezing transform, Applied and Computational Harmonic Analysis, 45 (2018) 379-404.
  17. R. Maulik, O. San, and R. Behera, An adaptive multilevel wavelet framework for scale-selective WENO reconstruction schemes, International Journal for Numerical Methods in Fluids, 87(5) (2018) 239-269.
  18. R. Behera, and M. Mehra, An adaptive wavelet collocation method for solution of the convection dominated problem on the sphere, International Journal of Computational Methods, 15(1) (2018) 1850080-1850098.
  19. R. Behera and M. Mehra, Approximation of the differential operators on an adaptive spherical geodesic grid using spherical wavelet, Mathematics and Computers in Simulation, 132 (2017) 120-138.
  20. R. Behera, and D. Mishra, Further results on generalized inverses of tensors via Einstein product, Linear and Multilinear Algebra. 65(8) (2017) 1662-1682.
  21. R. Behera, M. Mehra and N. K. R. Kevlahan, Multilevel Approximation of the Gradient Operator on an Adaptive Spherical Geodesic Grid, Advances in Computational Mathematics, 41(3) (2015) 663-689.
  22. R. Behera and M. Mehra, A Dynamic Adaptive Wavelet Method for Solution of the Schrodinger Equation, Journal of Multiscale Modelling, 06 (1) (2015) 1450001-1430023.
  23. R. Behera and M. Mehra, Integration of Barotropic Vorticity Equation Over Spherical Geodesic Grid using Multilevel Adaptive Wavelet Collocation Method, Applied Mathematical Modelling, 37 (2013) 5215-5226.
  24. R. Behera and M. Mehra, Approximate solution of Modified Camassa-Holm and Degasperis-Procesi Equations using Wavelet optimized finite difference method, Int. J. Wavelets Multiresolut. Inf. Process.11 (2013) 1350019.